Xiuxing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5264552/publications.pdf Version: 2024-02-01

XILLXING WANG

#	Article	IF	CITATIONS
1	Transcription Elongation Machinery Is a Druggable Dependency and Potentiates Immunotherapy in Glioblastoma Stem Cells. Cancer Discovery, 2022, 12, 502-521.	9.4	29
2	Glioblastoma stem cells reprogram chromatin in vivo to generate selective therapeutic dependencies on DPY30 and phosphodiesterases. Science Translational Medicine, 2022, 14, eabf3917.	12.4	13
3	Upregulated YB-1 protein promotes glioblastoma growth through a YB-1/CCT4/mLST8/mTOR pathway. Journal of Clinical Investigation, 2022, 132, .	8.2	21
4	Loss of MAT2A compromises methionine metabolism and represents a vulnerability in H3K27M mutant glioma by modulating the epigenome. Nature Cancer, 2022, 3, 629-648.	13.2	16
5	PDGF signaling inhibits mitophagy in glioblastoma stem cells through N-methyladenosine. Developmental Cell, 2022, 57, 1466-1481.e6.	7.0	30
6	Targeting nuclear pore complex and therapeutic response in glioblastoma stem cells Journal of Clinical Oncology, 2022, 40, e14000-e14000.	1.6	1
7	β2-Microglobulin Maintains Glioblastoma Stem Cells and Induces M2-like Polarization of Tumor-Associated Macrophages. Cancer Research, 2022, 82, 3321-3334.	0.9	31
8	The RNA m6A Reader YTHDF2 Maintains Oncogene Expression and Is a Targetable Dependency in Glioblastoma Stem Cells. Cancer Discovery, 2021, 11, 480-499.	9.4	218
9	Targeting EYA2 tyrosine phosphatase activity in glioblastoma stem cells induces mitotic catastrophe. Journal of Experimental Medicine, 2021, 218, .	8.5	9
10	The Meningioma Enhancer Landscape Delineates Novel Subgroups and Drives Druggable Dependencies. Cancer Discovery, 2020, 10, 1722-1741.	9.4	30
11	Dual Role of WISP1 in maintaining glioma stem cells and tumor-supportive macrophages in glioblastoma. Nature Communications, 2020, 11, 3015.	12.8	111
12	Zika Virus Targets Glioblastoma Stem Cells through a SOX2-Integrin αvβ5 Axis. Cell Stem Cell, 2020, 26, 187-204.e10.	11.1	126
13	SATB2 drives glioblastoma growth by recruiting CBP to promote FOXM1 expression in glioma stem cells. EMBO Molecular Medicine, 2020, 12, e12291.	6.9	35
14	Targeting pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem cells. Science Translational Medicine, 2019, 11, .	12.4	112
15	Targeting Glioblastoma Stem Cells through Disruption of the Circadian Clock. Cancer Discovery, 2019, 9, 1556-1573.	9.4	172
16	RAS: Striking at the Core of the Oncogenic Circuitry. Frontiers in Oncology, 2019, 9, 965.	2.8	106
17	Glioma Stem Cell–Specific Superenhancer Promotes Polyunsaturated Fatty-Acid Synthesis to Support EGFR Signaling. Cancer Discovery, 2019, 9, 1248-1267.	9.4	120
18	Chromatin landscapes reveal developmentally encoded transcriptional states that define human glioblastoma. Journal of Experimental Medicine, 2019, 216, 1071-1090.	8.5	89

XIUXING WANG

#	Article	IF	CITATIONS
19	Functional Enhancers Shape Extrachromosomal Oncogene Amplifications. Cell, 2019, 179, 1330-1341.e13.	28.9	206
20	Chromatin remodeler HELLS maintains glioma stem cells through E2F3 and MYC. JCI Insight, 2019, 4, .	5.0	30
21	Reciprocal Signaling between Glioblastoma Stem Cells and Differentiated Tumor Cells Promotes Malignant Progression. Cell Stem Cell, 2018, 22, 514-528.e5.	11.1	185
22	Therapeutic targeting of ependymoma as informed by oncogenic enhancer profiling. Nature, 2018, 553, 101-105.	27.8	170
23	lbrutinib inactivates BMX-STAT3 in glioma stem cells to impair malignant growth and radioresistance. Science Translational Medicine, 2018, 10, .	12.4	112
24	Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nature Communications, 2017, 8, 15080.	12.8	219
25	Purine synthesis promotes maintenance of brain tumor initiating cells in glioma. Nature Neuroscience, 2017, 20, 661-673.	14.8	153
26	Deubiquitinase USP13 maintains glioblastoma stem cells by antagonizing FBXL14-mediated Myc ubiquitination. Journal of Experimental Medicine, 2017, 214, 245-267.	8.5	123
27	Targeting glioma stem cells through combined BMI1 and EZH2 inhibition. Nature Medicine, 2017, 23, 1352-1361.	30.7	279
28	Zika virus has oncolytic activity against glioblastoma stem cells. Journal of Experimental Medicine, 2017, 214, 2843-2857.	8.5	179
29	MYC-Regulated Mevalonate Metabolism Maintains Brain Tumor–Initiating Cells. Cancer Research, 2017, 77, 4947-4960.	0.9	91
30	GENE-32. ACTIVE CHROMATIN REGULATORY MAPS IDENTIFY CORE CELL STATE DRIVERS OF GLIOBLASTOMA. Neuro-Oncology, 2017, 19, vi99-vi99.	1.2	0
31	Nicotinamide metabolism regulates glioblastoma stem cell maintenance. JCI Insight, 2017, 2, .	5.0	93
32	RBPJ maintains brain tumor–initiating cells through CDK9-mediated transcriptional elongation. Journal of Clinical Investigation, 2016, 126, 2757-2772.	8.2	52
33	MILI, a PIWI family protein, inhibits melanoma cell migration through methylation of LINE1. Biochemical and Biophysical Research Communications, 2015, 457, 514-519.	2.1	7
34	Protein prenylation and human diseases: a balance of protein farnesylation and geranylgeranylation. Science China Life Sciences, 2015, 58, 328-335.	4.9	50
35	Differential display of expressed genes reveals a novel function of <i>SFRS18</i> in regulation of intramuscular fat deposition. International Journal of Biological Sciences, 2009, 5, 28-33.	6.4	24
36	The pig p160 co-activator family: Full length cDNA cloning, expression and effects on intramuscular fat content in Longissimus Dorsi muscle. Domestic Animal Endocrinology, 2008, 35, 208-216.	1.6	13