Markus W Covert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5264524/publications.pdf

Version: 2024-02-01

64 papers

9,687 citations

36 h-index 62 g-index

67 all docs

67 docs citations

67 times ranked

10967 citing authors

#	Article	IF	Citations
1	Building Structural Models of a Whole Mycoplasma Cell. Journal of Molecular Biology, 2022, 434, 167351.	2.0	40
2	Vivarium: an interface and engine for integrative multiscale modeling in computational biology. Bioinformatics, 2022, 38, 1972-1979.	1.8	12
3	A multiplexed epitope barcoding strategy that enables dynamic cellular phenotypic screens. Cell Systems, 2022, 13, 376-387.e8.	2.9	6
4	Microbial metabolites in the marine carbon cycle. Nature Microbiology, 2022, 7, 508-523.	5.9	71
5	The Enemy of My Enemy: New Insights Regarding Bacteriophage–Mammalian Cell Interactions. Trends in Microbiology, 2021, 29, 528-541.	3.5	32
6	BUILDING WHOLE-CELL COMPUTATIONAL MODELS TO PREDICT CELLULAR PHENOTYPES AND ACCELERATE DISCOVERY., 2021, , .		0
7	A forecast for large-scale, predictive biology: Lessons from meteorology. Cell Systems, 2021, 12, 488-496.	2.9	5
8	The E. coli Whole-Cell Modeling Project. EcoSal Plus, 2021, 9, eESP00012020.	2.1	12
9	A Protocol to Engineer Bacteriophages for Live-Cell Imaging of Bacterial Prophage Induction Inside Mammalian Cells. STAR Protocols, 2020, 1, 100084.	0.5	2
10	Simultaneous cross-evaluation of heterogeneous <i>E. coli</i> datasets via mechanistic simulation. Science, 2020, 369, .	6.0	105
11	Engineered Fluorescent E.Âcoli Lysogens Allow Live-Cell Imaging of Functional Prophage Induction Triggered inside Macrophages. Cell Systems, 2020, 10, 254-264.e9.	2.9	14
12	Stress-mediated exit to quiescence restricted by increasing persistence in CDK4/6 activation. ELife, 2020, 9, .	2.8	49
13	Multiscale models of infection. Current Opinion in Biomedical Engineering, 2019, 11, 102-108.	1.8	6
14	Deep learning for cellular image analysis. Nature Methods, 2019, 16, 1233-1246.	9.0	754
15	Techniques for Studying Decoding of Single Cell Dynamics. Frontiers in Immunology, 2019, 10, 755.	2.2	29
16	Simultaneous Cross-Evaluation of Heterogeneous E. coli Datasets via Mechanistic Simulation. Biophysical Journal, 2019, 116, 451a.	0.2	1
17	NF- \hat{l}^{o} B signaling dynamics is controlled by a dose-sensing autoregulatory loop. Science Signaling, 2019, 12, .	1.6	52
18	Escalating Threat Levels of Bacterial Infection Can Be Discriminated by Distinct MAPK and NF-κB Signaling Dynamics in Single Host Cells. Cell Systems, 2019, 8, 183-196.e4.	2.9	23

#	Article	IF	Citations
19	Combinatorial processing of bacterial and host-derived innate immune stimuli at the single-cell level. Molecular Biology of the Cell, 2019, 30, 282-292.	0.9	11
20	An energetic reformulation of kinetic rate laws enables scalable parameter estimation for biochemical networks. Journal of Theoretical Biology, 2019, 461, 145-156.	0.8	26
21	Live-cell measurements of kinase activity in single cells using translocation reporters. Nature Protocols, 2018, 13, 155-169.	5.5	90
22	Measuring Signaling and RNA-Seq in the Same Cell Links Gene Expression to Dynamic Patterns of NF-κB Activation. Cell Systems, 2017, 4, 458-469.e5.	2.9	141
23	Combining Comprehensive Analysis of Off-Site Lambda Phage Integration with a CRISPR-Based Means of Characterizing Downstream Physiology. MBio, 2017, 8, .	1.8	3
24	Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments. PLoS Computational Biology, 2016, 12, e1005177.	1.5	429
25	High-resolution imaging and computational analysis of haematopoietic cell dynamics in vivo. Nature Communications, 2016, 7, 12169.	5.8	27
26	Single-cell variation leads to population invariance in NF- \hat{l}^{P} B signaling dynamics. Molecular Biology of the Cell, 2015, 26, 583-590.	0.9	44
27	Summary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models. PLoS Computational Biology, 2015, 11, e1004096.	1.5	35
28	Why Build Whole-Cell Models?. Trends in Cell Biology, 2015, 25, 719-722.	3.6	62
29	NetworkPainter: dynamic intracellular pathway animation in Cytobank. BMC Bioinformatics, 2015, 16, 172.	1.2	3
30	WholeCellSimDB: a hybrid relational/HDF database for whole-cell model predictions. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau095-bau095.	1.4	39
31	The future of whole-cell modeling. Current Opinion in Biotechnology, 2014, 28, 111-115.	3.3	73
32	Incorporation of flexible objectives and time-linked simulation with flux balance analysis. Journal of Theoretical Biology, 2014, 345, 12-21.	0.8	17
33	Nonlytic viral spread enhanced by autophagy components. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13081-13086.	3.3	204
34	High-Sensitivity Measurements of Multiple Kinase Activities in Live Single Cells. Cell, 2014, 157, 1724-1734.	13.5	483
35	Accelerated discovery via a whole-cell model. Nature Methods, 2013, 10, 1192-1195.	9.0	59
36	WholeCellViz: data visualization for whole-cell models. BMC Bioinformatics, 2013, 14, 253.	1,2	23

#	Article	IF	CITATIONS
37	Towards a whole-cell modeling approach for synthetic biology. Chaos, 2013, 23, 025112.	1.0	62
38	Single-Cell and Population NF-κB Dynamic Responses Depend on Lipopolysaccharide Preparation. PLoS ONE, 2013, 8, e53222.	1.1	18
39	Determining Host Metabolic Limitations on Viral Replication via Integrated Modeling and Experimental Perturbation. PLoS Computational Biology, 2012, 8, e1002746.	1.5	51
40	WholeCellKB: model organism databases for comprehensive whole-cell models. Nucleic Acids Research, 2012, 41, D787-D792.	6.5	42
41	Neuronâ€ŧoâ€neuron transmission of αâ€synuclein fibrils through axonal transport. Annals of Neurology, 2012, 72, 517-524.	2.8	305
42	Competing pathways control host resistance to virus via tRNA modification and programmed ribosomal frameshifting. Molecular Systems Biology, 2012, 8, 567.	3.2	42
43	A Whole-Cell Computational Model Predicts Phenotype from Genotype. Cell, 2012, 150, 389-401.	13.5	1,177
44	The virus as metabolic engineer. Biotechnology Journal, 2010, 5, 686-694.	1.8	63
45	Computational modeling of mammalian signaling networks. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2010, 2, 194-209.	6.6	61
46	Single-cell NF-κB dynamics reveal digital activation and analogue information processing. Nature, 2010, 466, 267-271.	13.7	736
47	A Forward-Genetic Screen and Dynamic Analysis of Lambda Phage Host-Dependencies Reveals an Extensive Interaction Network and a New Anti-Viral Strategy. PLoS Genetics, 2010, 6, e1001017.	1.5	78
48	High-throughput, single-cell NF-κB dynamics. Current Opinion in Genetics and Development, 2010, 20, 677-683.	1.5	27
49	A dynamic network of transcription in LPS-treated human subjects. BMC Systems Biology, 2009, 3, 78.	3.0	36
50	Genomeâ€scale metabolic networks. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2009, 1, 285-297.	6.6	115
51	A Noisy Paracrine Signal Determines the Cellular NF-κB Response to Lipopolysaccharide. Science Signaling, 2009, 2, ra65.	1.6	124
52	Integrating metabolic, transcriptional regulatory and signal transduction models in <i>Escherichia coli </i> i> Bioinformatics, 2008, 24, 2044-2050.	1.8	285
53	Integrated Regulatory and Metabolic Models. , 2006, , 191-204.		0
54	Achieving Stability of Lipopolysaccharide-Induced NF-ÂB Activation. Science, 2005, 309, 1854-1857.	6.0	557

#	Article	IF	CITATIONS
55	Integrating high-throughput and computational data elucidates bacterial networks. Nature, 2004, 429, 92-96.	13.7	796
56	Reconstruction of microbial transcriptional regulatory networks. Current Opinion in Biotechnology, 2004, 15, 70-77.	3.3	149
57	Constraints-based models: Regulation of Gene Expression Reduces the Steady-state Solution Space. Journal of Theoretical Biology, 2003, 221, 309-325.	0.8	157
58	Identifying constraints that govern cell behavior: a key to converting conceptual to computational models in biology?. Biotechnology and Bioengineering, 2003, 84, 763-772.	1.7	76
59	Reconciling Gene Expression Data With Known Genome-Scale Regulatory Network Structures. Genome Research, 2003, 13, 2423-2434.	2.4	96
60	Transcriptional Regulation in Constraints-based Metabolic Models of Escherichia coli. Journal of Biological Chemistry, 2002, 277, 28058-28064.	1.6	301
61	Genome-Scale Metabolic Model of Helicobacter pylori 26695. Journal of Bacteriology, 2002, 184, 4582-4593.	1.0	317
62	Metabolic modelling of microbes: the flux-balance approach. Environmental Microbiology, 2002, 4, 133-140.	1.8	335
63	Regulation of Gene Expression in Flux Balance Models of Metabolism. Journal of Theoretical Biology, 2001, 213, 73-88.	0.8	399
64	Metabolic modeling of microbial strains in silico. Trends in Biochemical Sciences, 2001, 26, 179-186.	3.7	291