Alan G Watts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5264176/publications.pdf

Version: 2024-02-01

81 papers

4,912 citations

36 h-index 95259 68 g-index

84 all docs 84 docs citations

times ranked

84

3762 citing authors

#	Article	IF	CITATIONS
1	The physiological control of eating: signals, neurons, and networks. Physiological Reviews, 2022, 102, 689-813.	28.8	60
2	The Medullary Targets of Neurally Conveyed Sensory Information from the Rat Hepatic Portal and Superior Mesenteric Veins. ENeuro, 2021, 8, ENEURO.0419-20.2021.	1.9	12
3	Oxaliplatin Pt(IV) prodrugs conjugated to gadolinium-texaphyrin as potential antitumor agents. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7021-7029.	7.1	42
4	In vivo efficacy of a dry powder formulation of ciprofloxacin-copper complex in a chronic lung infection model of bioluminescent Pseudomonas aeruginosa. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 152, 210-217.	4.3	7
5	Enhanced Aerosolization of High Potency Nanoaggregates of Voriconazole by Dry Powder Inhalation. Molecular Pharmaceutics, 2019, 16, 1799-1812.	4.6	33
6	Delivery Technologies for Orally Inhaled Products: an Update. AAPS PharmSciTech, 2019, 20, 117.	3.3	36
7	Caveolin-1–derived peptide limits development of pulmonary fibrosis. Science Translational Medicine, 2019, 11, .	12.4	58
8	Manufacturing and ambient stability of shelf freeze dried bacteriophage powder formulations. International Journal of Pharmaceutics, 2018, 542, 1-7.	5.2	36
9	Neurotransmitter diversity in preâ€synaptic terminals located in the parvicellular neuroendocrine paraventricular nucleus of the rat and mouse hypothalamus. Journal of Comparative Neurology, 2018, 526, 1287-1306.	1.6	18
10	An update on coating/manufacturing techniques of microneedles. Drug Delivery and Translational Research, 2018, 8, 1828-1843.	5. 8	63
11	Loss of dorsomedial hypothalamic GLP-1 signaling reduces BAT thermogenesis and increases adiposity. Molecular Metabolism, 2018, 11, 33-46.	6.5	66
12	Catecholaminergic projections into an interconnected forebrain network control the sensitivity of male rats to diet-induced obesity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 314, R811-R823.	1.8	8
13	Glucagon-like peptide-1 regulates brown adipose tissue thermogenesis via the gut-brain axis in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R708-R720.	1.8	39
14	Great Expectations: Anticipatory Control of Magnocellular Vasopressin Neurons. Neuron, 2017, 93, 1-2.	8.1	28
15	Bidirectional crosstalk between the sensory and sympathetic motor systems innervating brown and white adipose tissue in male Siberian hamsters. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R324-R337.	1.8	43
16	Rapid-onset hypoglycemia suppresses Fos expression in discrete parts of the ventromedial nucleus of the hypothalamus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R1177-R1185.	1.8	13
17	Limiting glucocorticoid secretion increases the anorexigenic property of Exendin-4. Molecular Metabolism, 2016, 5, 552-565.	6.5	19
18	60 YEARS OF NEUROENDOCRINOLOGY: The structure of the neuroendocrine hypothalamus: the neuroanatomical legacy of Geoffrey Harris. Journal of Endocrinology, 2015, 226, T25-T39.	2.6	19

#	Article	IF	Citations
19	Formulation of a novel fixed dose combination of salmeterol xinafoate and mometasone furoate for inhaled drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 132-142.	4.3	11
20	The Rate of Fall of Blood Glucose Determines the Necessity of Forebrain-Projecting Catecholaminergic Neurons for Male Rat Sympathoadrenal Responses. Diabetes, 2014, 63, 2854-2865.	0.6	36
21	Activation of Hindbrain Neurons Is Mediated by Portal-Mesenteric Vein Glucosensors During Slow-Onset Hypoglycemia. Diabetes, 2014, 63, 2866-2875.	0.6	47
22	How Do We Know if the Brain Is Wired for Type 2 Diabetes?. Current Diabetes Reports, 2014, 14, 465.	4.2	3
23	The impact of pulmonary diseases on the fate of inhaled medicinesâ€"A review. International Journal of Pharmaceutics, 2014, 461, 112-128.	5.2	46
24	Neural Input Is Critical for Arcuate Hypothalamic Neurons to Mount Intracellular Signaling Responses to Systemic Insulin and Deoxyglucose Challenges in Male Rats: Implications for Communication Within Feeding and Metabolic Control Networks. Endocrinology, 2014, 155, 405-416.	2.8	14
25	Peripheral and Central Glucose Sensing In Hypoglycemic Detection. Physiology, 2014, 29, 314-324.	3.1	62
26	Characterization and pharmacokinetic analysis of crystalline versus amorphous rapamycin dry powder via pulmonary administration in rats. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 136-147.	4.3	39
27	Identifying Links in the Chain. Advances in Pharmacology, 2013, 68, 421-444.	2.0	11
28	Respirable Low-Density Microparticles Formed In Situ from Aerosolized Brittle Matrices. Pharmaceutical Research, 2013, 30, 813-825.	3.5	50
29	Characterization of Corticotropin-Releasing Hormone neurons in the Paraventricular Nucleus of the Hypothalamus of Crh-IRES-Cre Mutant Mice. PLoS ONE, 2013, 8, e64943.	2.5	134
30	Neuroendocrine Regulation of Food Intake. , 2012, , 331-354.		2
31	Salt-Inducible Kinase Is Involved in the Regulation of Corticotropin-Releasing Hormone Transcription in Hypothalamic Neurons in Rats. Endocrinology, 2012, 153, 223-233.	2.8	39
32	Dehydration-anorexia derives from a reduction in meal size, but not meal number. Physiology and Behavior, 2012, 105, 305-314.	2.1	21
33	Preface to the Special Issue of Physiology and Behavior from the 2010 Annual Meeting of the Society for the Study of Ingestive Behavior (SSIB). Physiology and Behavior, 2011, 104, 515-516.	2.1	0
34	The Distribution of Messenger RNAs Encoding the Three Isoforms of the Transducer of Regulated cAMP Responsive Element Binding Protein Activity in the Rat Forebrain. Journal of Neuroendocrinology, 2011, 23, 754-766.	2.6	43
35	Structure and function in the conceptual development of mammalian neuroendocrinology between 1920 and 1965. Brain Research Reviews, 2011, 66, 174-204.	9.0	10
36	MAP Kinases Couple Hindbrain-Derived Catecholamine Signals to Hypothalamic Adrenocortical Control Mechanisms during Glycemia-Related Challenges. Journal of Neuroscience, 2011, 31, 18479-18491.	3.6	42

#	Article	IF	CITATIONS
37	Characterization and pharmacokinetic analysis of tacrolimus dispersion for nebulization in a lung transplanted rodent model. International Journal of Pharmaceutics, 2010, 384, 46-52.	5.2	24
38	Sweet talk in the brain: Glucosensing, neural networks, and hypoglycemic counterregulation. Frontiers in Neuroendocrinology, 2010, 31, 32-43.	5.2	133
39	The functional architecture of dehydration-anorexia. Physiology and Behavior, 2010, 100, 472-477.	2.1	47
40	Site-specific attenuation of food intake but not the latency to eat after hypothalamic injections of neuropeptide Y in dehydrated-anorexic rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R1813-R1821.	1.8	7
41	Recent Developments in Drug Delivery to Prolong Allograft Survival in Lung Transplant Patients. Drug Development and Industrial Pharmacy, 2009, 35, 259-271.	2.0	13
42	Current Therapies and Technological Advances in Aqueous Aerosol Drug Delivery. Drug Development and Industrial Pharmacy, 2008, 34, 913-922.	2.0	95
43	The role of hypothalamic ingestive behavior controllers in generating dehydration anorexia: a Fos mapping study. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R1009-R1019.	1.8	15
44	Hypoglycemic detection at the portal vein is mediated by capsaicin-sensitive primary sensory neurons. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E96-E101.	3. 5	46
45	A Role for the Forebrain in Mediating Time-of-Day Differences in Glucocorticoid Counterregulatory Responses to Hypoglycemia in Rats. Endocrinology, 2007, 148, 6026-6039.	2.8	17
46	Catecholaminergic Control of Mitogen-Activated Protein Kinase Signaling in Paraventricular Neuroendocrine Neurons <i>In Vivo</i> and <i>In Vitro</i> : A Proposed Role during Glycemic Challenges. Journal of Neuroscience, 2007, 27, 7344-7360.	3.6	55
47	Neural network interactions and ingestive behavior control during anorexia. Physiology and Behavior, 2007, 91, 389-396.	2.1	19
48	Rapid and preferential activation of Fos protein in hypocretin/orexin neurons following the reversal of dehydration-anorexia. Journal of Comparative Neurology, 2007, 502, 768-782.	1.6	33
49	Activation in neural networks controlling ingestive behaviors: What does it mean, and how do we map and measure it?. Physiology and Behavior, 2006, 89, 501-510.	2.1	25
50	NeuroScholar's Electronic Laboratory Notebook and Its Application to Neuroendocrinology. Neuroinformatics, 2006, 4, 139-162.	2.8	12
51	Glucocorticoid regulation of peptide genes in neuroendocrine CRH neurons: A complexity beyond negative feedback. Frontiers in Neuroendocrinology, 2005, 26, 109-130.	5.2	176
52	Glucocorticoids and the ups and downs of neuropeptide gene expression., 2005,, 202-234.		1
53	Comparison of melanin-concentrating hormone and hypocretin/orexin mRNA expression patterns in a new parceling scheme of the lateral hypothalamic zone. Neuroscience Letters, 2005, 387, 80-84.	2.1	140
54	Neural Mechanisms of Anorexia. , 2004, , 383-420.		7

#	Article	IF	CITATIONS
55	Intravenous 2-Deoxy-d-Glucose Injection Rapidly Elevates Levels of the Phosphorylated Forms of p44/42 Mitogen-Activated Protein Kinases (Extracellularly Regulated Kinases 1/2) in Rat Hypothalamic Parvicellular Paraventricular Neurons. Endocrinology, 2004, 145, 351-359.	2.8	40
56	Corticotropin-Releasing Hormone and Arginine Vasopressin Gene Transcription in the Hypothalamic Paraventricular Nucleus of Unstressed Rats: Daily Rhythms and Their Interactions with Corticosterone. Endocrinology, 2004, 145, 529-540.	2.8	96
57	Immunotoxin Lesion of Hypothalamically Projecting Norepinephrine and Epinephrine Neurons Differentially Affects Circadian and Stressor-Stimulated Corticosterone Secretion. Endocrinology, 2003, 144, 1357-1367.	2.8	148
58	Differential suppression of hyperglycemic, feeding, and neuroendocrine responses in anorexia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R174-R182.	1.8	19
59	Energy Balance, Ingestive Behavior, and Reproductive Success. , 2002, , 435-IV.		10
60	Interactions between Heterotypic Stressors and Corticosterone Reveal Integrative Mechanisms for Controlling Corticotropin-Releasing Hormone Gene Expression in the Rat Paraventricular Nucleus. Journal of Neuroscience, 2002, 22, 6282-6289.	3.6	38
61	Corticosterone modulation of ACTH secretogogue gene expression in the paraventricular nucleus. Peptides, 2001, 22, 775-783.	2.4	16
62	Basic organization of projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis in adult rat brain. Journal of Comparative Neurology, 2001, 436, 430-455.	1.6	440
63	Neuropeptides and the Integration of Motor Responses to Dehydration. Annual Review of Neuroscience, 2001, 24, 357-384.	10.7	46
64	Understanding the Neural Control of Ingestive Behaviors: Helping to Separate Cause from Effect with Dehydration-Associated Anorexia. Hormones and Behavior, 2000, 37, 261-283.	2.1	96
65	Distinct Patterns of Neuropeptide Gene Expression in the Lateral Hypothalamic Area and Arcuate Nucleus Are Associated with Dehydration-Induced Anorexia. Journal of Neuroscience, 1999, 19, 6111-6121.	3.6	96
66	Dehydration modifies somal CRH immunoreactivity in the rat hypothalamus: an immunocytochemical study in the absence of colchicine. Brain Research, 1999, 822, 251-255.	2.2	21
67	The region of the pontine parabrachial nucleus is a major target of dehydration-sensitive CRH neurons in the rat lateral hypothalamic area. , 1998, 394, 48-63.		43
68	Structural organization and chromosomal localization of the human Na,K-ATPase \hat{l}^2 3 subunit gene and pseudogene. Mammalian Genome, 1998, 9, 136-143.	2.2	29
69	Dehydration-Associated Anorexia. Physiology and Behavior, 1998, 65, 871-878.	2.1	78
70	Corticosterone Can Facilitate as Well as Inhibit Corticotropin-Releasing Hormone Gene Expression in the Rat Hypothalamic Paraventricular Nucleus*. Endocrinology, 1998, 139, 3830-3836.	2.8	68
71	Peptide Gene Activation, Secretion, and Steroid Feedback during Stimulation of Rat Neuroendocrine Corticotropin-Releasing Hormone Neurons1. Endocrinology, 1998, 139, 3822-3829.	2.8	35
72	Peptide Gene Activation, Secretion, and Steroid Feedback during Stimulation of Rat Neuroendocrine Corticotropin-Releasing Hormone Neurons. Endocrinology, 1998, 139, 3822-3829.	2.8	21

#	Article	IF	CITATION
73	The Impact of Physiological Stimuli on the Expression of Corticotropin-Releasing Hormone (CRH) and Other Neuropeptide Genes. Frontiers in Neuroendocrinology, 1996, 17, 281-326.	5.2	123
74	Mediation of dehydration-induced peptidergic gene expression in the rat lateral hypothalamic area by forebrain afferent projections., 1996, 370, 231-246.		44
75	Neuropeptides and thirst: The temporal response of corticotropin-releasing hormone and neurotensin/neuromedin N gene expression in rat limbic forebrain neurons to drinking hypertonic saline Behavioral Neuroscience, 1995, 109, 1146-1157.	1.2	45
76	Physiological regulation of peptide messenger RNA colocalization in rat hypothalamic paraventricular medial parvicellular neurons. Journal of Comparative Neurology, 1995, 352, 501-514.	1.6	57
77	A cell-specific role for the adrenal gland in regulating CRH mRNA levels in rat hypothalamic neurosecretory neurons after cellular dehydration. Brain Research, 1995, 687, 63-70.	2.2	18
78	Osmotic stimulation differentially affects cellular levels of corticotropin-releasing hormone and neurotensin/neuromedin N mRNAS in the lateral hypothalamic area and central nucleus of the amygdala. Brain Research, 1992, 581, 208-216.	2.2	43
79	Combination of in Situ Hybridization with Immunohistochemistry and Retrograde Tract-Tracing. Methods in Neurosciences, 1989, , 127-136.	0.5	22
80	Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of <i>Phaseolus vulgaris</i> leucoagglutinin in the rat. Journal of Comparative Neurology, 1987, 258, 204-229.	1.6	652
81	Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. Journal of Comparative	1.6	479