
Ragna Berthelsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5264074/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Use of Glycerol as an Enabling Excipient for Microwave-Induced In Situ Drug Amorphization. Journal of Pharmaceutical Sciences, 2021, 110, 155-163.	1.6	11
2	Predicting Oral Absorption of fenofibrate in Lipid-Based Drug Delivery Systems by Combining InÂVitro Lipolysis with the Mucus-PVPA Permeability Model. Journal of Pharmaceutical Sciences, 2021, 110, 208-216.	1.6	10
3	Effects of recombinant human gastric lipase and pancreatin during <i>in vitro</i> pediatric gastro-intestinal digestion. Food and Function, 2021, 12, 2938-2949.	2.1	4
4	Estimating the Oral Absorption from Self-Nanoemulsifying Drug Delivery Systems Using an In Vitro Lipolysis-Permeation Method. Pharmaceutics, 2021, 13, 489.	2.0	11
5	Utilizing Laser Activation of Photothermal Plasmonic Nanoparticles to Induce On-Demand Drug Amorphization inside a Tablet. Molecular Pharmaceutics, 2021, 18, 2254-2262.	2.3	8
6	Studying the Impact of the Temperature and Sorbed Water during Microwave-Induced In Situ Amorphization: A Case Study of Celecoxib and Polyvinylpyrrolidone. Pharmaceutics, 2021, 13, 886.	2.0	2
7	The Influence of Drug–Polymer Solubility on Laser-Induced In Situ Drug Amorphization Using Photothermal Plasmonic Nanoparticles. Pharmaceutics, 2021, 13, 917.	2.0	1
8	The Effect of the Molecular Weight of Polyvinylpyrrolidone and the Model Drug on Laser-Induced In Situ Amorphization. Molecules, 2021, 26, 4035.	1.7	0
9	Drug solubilization during simulated pediatric gastro-intestinal digestion. European Journal of Pharmaceutical Sciences, 2021, 162, 105828.	1.9	2
10	Microwave induced in situ amorphisation facilitated by crystalline hydrates. European Journal of Pharmaceutical Sciences, 2021, 163, 105858.	1.9	8
11	Microwave-Induced in Situ Drug Amorphization Using a Mixture of Polyethylene Glycol and Polyvinylpyrrolidone. Journal of Pharmaceutical Sciences, 2021, 110, 3221-3229.	1.6	7
12	The Influence of Temperature and Viscosity of Polyethylene Glycol on the Rate of Microwave-Induced In Situ Amorphization of Celecoxib. Molecules, 2021, 26, 110.	1.7	12
13	Evaluating side-by-side diffusion models for studying drug supersaturation in an absorptive environment: a case example of fenofibrate and felodipine. Journal of Pharmacy and Pharmacology, 2020, 72, 371-384.	1.2	5
14	Effect of centrifugation speed on the measured equilibrium solubility of poorly water-soluble compounds in viscous solvents. Journal of Drug Delivery Science and Technology, 2020, 59, 101853.	1.4	0
15	Adding a Gastric Step to the Intestinal <i>In Vitro</i> Digestion Model Improves the Prediction of Pharmacokinetic Data in Beagle Dogs of Two Lipid-Based Drug Delivery Systems. Molecular Pharmaceutics, 2020, 17, 3214-3222.	2.3	9
16	Convection-Induced vs. Microwave Radiation-Induced in situ Drug Amorphization. Molecules, 2020, 25, 1068.	1.7	12
17	The influence of drug and polymer particle size on the in situ amorphization using microwave irradiation. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 149, 77-84.	2.0	24
18	In vitro digestion models to evaluate lipid based drug delivery systems; present status and current trends. Advanced Drug Delivery Reviews, 2019, 142, 35-49.	6.6	76

#	Article	IF	CITATIONS
19	Studying furosemide solubilization using an in vitro model simulating gastrointestinal digestion and drug solubilization in neonates and young infants. European Journal of Pharmaceutical Sciences, 2017, 109, 191-199.	1.9	13

In Vitro Model Simulating Gastro-Intestinal Digestion in the Pediatric Population (Neonates and) Tj ETQq0 0 0 rgBT $_{1.5}^{1/0}$ Verlock $_{34}^{10}$ Tf 50 70

21	Development of a \hat{l} /4Dissolution-Permeation model with in situ drug concentration monitoring. Journal of Drug Delivery Science and Technology, 2016, 35, 223-233.	1.4	6
22	Evaluating Oral Drug Delivery Systems: Dissolution Models. Advances in Delivery Science and Technology, 2016, , 753-771.	0.4	1
23	Evaluating Oral Drug Delivery Systems: Digestion Models. Advances in Delivery Science and Technology, 2016, , 773-790.	0.4	1
24	Dissolution Model Development: Formulation Effects and Filter Complications. Dissolution Technologies, 2016, 23, 6-12.	0.2	3
25	Kolliphor Surfactants Affect Solubilization and Bioavailability of Fenofibrate. Studies of in Vitro Digestion and Absorption in Rats. Molecular Pharmaceutics, 2015, 12, 1062-1071.	2.3	35
26	Combining in vitro and in silico methods for better prediction of surfactant effects on the absorption of poorly water soluble drugs—a fenofibrate case example. International Journal of Pharmaceutics, 2014, 473, 356-365.	2.6	19
27	Basolateral glycylsarcosine (Gly-Sar) transport in Caco-2 cell monolayers is pH dependent. Journal of Pharmacy and Pharmacology, 2013, 65, 970-979.	1.2	16