Xingyun Jia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5264053/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Leakage and rotordynamic performance of T type labyrinth seal. Aerospace Science and Technology, 2019, 88, 22-31.	4.8	24
2	Numerical investigation on the effect of hot running rim seal clearance on hot gas ingestion into rotor-stator system. Applied Thermal Engineering, 2019, 152, 79-91.	6.0	21
3	Effect of turbine rotor disc vibration on hot gas ingestion and rotor-stator cavity flow. Aerospace Science and Technology, 2020, 98, 105719.	4.8	18
4	Numerical investigations on lifting and flow performance of finger seal with grooved pad. Aerospace Science and Technology, 2018, 81, 225-236.	4.8	17
5	Performance of radial–axial clearance rim seal in realistic working conditions. Aerospace Science and Technology, 2018, 77, 373-387.	4.8	15
6	Effect of the specific heat ratio on transonic axial compressor rotor performances. Applied Thermal Engineering, 2019, 148, 307-315.	6.0	11
7	Interaction Between Rotor and Annular Seals: Interlaced and Straight-Through Labyrinth Seals. Journal of Propulsion and Power, 2016, 32, 1483-1493.	2.2	9
8	Research on the design method of highly loaded helium compressor based on the physical properties. Journal of Nuclear Science and Technology, 2017, 54, 837-849.	1.3	9
9	Investigation on Rotor-Labyrinth Seal System with Variable Rotating speed. International Journal of Turbo and Jet Engines, 2019, 36, 19-29.	0.7	7
10	Effects of Rotor Disc Growth on Flow and Heat Transfer Characteristics of Rim Seal. , 2017, , .		0
11	Conjugate Heat Transfer Analysis on Generic Rim Seal Configurations in Rotor-Stator System. , 2018, , .		0
12	Effect of rotor–stator rim cavity flow on the turbine. International Journal of Turbo and Jet Engines, 2021, .	0.7	0
13	Numerical research on effect of dislocated turbine rims on hot gas ingestion. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 0, , 095765092110383.	1.4	0
14	Investigation on Rotor-Labyrinth Seal System with Variable Rotating Speed. International Journal of Turbo and Jet Engines, 2016, .	0.7	0
15	Environment adaptive deployment of water quality sensor networks. International Journal of Intelligent Systems, 0, , .	5.7	0
16	Buffer effect of turbine rim cavity on hot gas ingestion. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 0, , 095765092210824.	1.4	0