List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5263935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dual-Ascent Hierarchical Control-Based Distribution Power Loss Reduction of Parallel-Connected Distributed Energy Storage Systems in DC Microgrids. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2023, 4, 137-146.	3.9	6
2	Single-Inductor Multiple-Output (SIMO) Buck Hybrid Converter for Simultaneous Wireless and Wired Power Transfer. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 2163-2177.	5.4	7
3	A Comparative Study on Overall Efficiency of Two-Dimensional Wireless Power Transfer Systems Using Rotational and Directional Methods. IEEE Transactions on Industrial Electronics, 2022, 69, 260-269.	7.9	21
4	Quasi-Static Modeling and Optimization of Two-Layer PCB Resonators in Wireless Power Transfer Systems for 110-kV Power Grid Online Monitoring Equipment. IEEE Transactions on Industrial Electronics, 2022, 69, 1400-1410.	7.9	24
5	Precise Luminous Flux and Color Control of Dimmable Red-Green-Blue Light-Emitting Diode Systems. IEEE Transactions on Power Electronics, 2022, 37, 588-606.	7.9	6
6	A Simple Multi-Vector Predictive Direct Power Control Using Geometric Modulation. IEEE Transactions on Power Electronics, 2022, 37, 2899-2908.	7.9	6
7	Improvement of Lithium-Ion Battery Charging From the State-of-the-Art Industrial JEITA Guidelines to a Hybrid Temperature-Regulated Current Control. IEEE Transactions on Power Electronics, 2022, 37, 6412-6423.	7.9	6
8	Interleaved Buck-Type Rectifier With Pseudo-DC-Link Capacitors for Automatic Current Balancing. IEEE Transactions on Industrial Electronics, 2022, 69, 12676-12687.	7.9	1
9	Exponential Modulation Integral Observer for Online Detection of the Fundamental and Harmonics in Grid-Connected Power Electronics Equipment. IEEE Transactions on Control Systems Technology, 2022, 30, 1821-1833.	5.2	2
10	A High-Order Differentiator Based Distributed Secondary Control for DC Microgrids Against False Data Injection Attacks. IEEE Transactions on Smart Grid, 2022, 13, 4035-4045.	9.0	14
11	Cyber-Attack Detection and Countermeasure for Distributed Electric Springs for Smart Grid Applications. IEEE Access, 2022, 10, 13182-13192.	4.2	3
12	A Modulation Method for Capacitance Reduction in Active-Clamp Flyback-Based AC–DC Adapters. IEEE Transactions on Power Electronics, 2022, 37, 9455-9467.	7.9	10
13	Dual-Layer Pulsewidth Modulation Technique for Average Neutral Point Current Control in Neutral-Point-Clamped Converters. IEEE Transactions on Power Electronics, 2022, 37, 11762-11773.	7.9	3
14	Optimization of Self-Adaptive INR-MPPT for R-Mode RED Stacks. , 2022, , .		1
15	Precise Luminous Flux and Color Temperature Control of Dimmable Bi-Color White Light-Emitting Diode Systems. , 2022, , .		Ο
16	Non-isolated Buck-Boost Hybrid Converter with AC-AC/DC Power Conversion for Simultaneous Wired and Wireless Power Transfer. , 2022, , .		1
17	Distributed Voltage Optimization Control of BESS in AC Distribution Networks with High PV Penetration. Energies, 2022, 15, 4120.	3.1	1
18	Power Loss Minimization of Parallel-Connected Distributed Energy Resources in DC Microgrids Using a Distributed Gradient Algorithm-Based Hierarchical Control. IEEE Transactions on Smart Grid, 2022, 13, 4538-4550.	9.0	14

#	Article	IF	CITATIONS
19	A Primary-Side Method for Ultrafast Determination of Mutual Coupling Coefficient in Milliseconds for Wireless Power Transfer Systems. IEEE Transactions on Power Electronics, 2022, 37, 15706-15716.	7.9	14
20	Electric Spring and Smart Load: Technology, System-Level Impact, and Opportunities. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 6524-6544.	5.4	26
21	Highly Efficient Wireless Power Transfer System With Single-Switch Step-Up Resonant Inverter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 1157-1168.	5.4	8
22	Highly Efficient Single-Switch-Regulated Resonant Wireless Power Receiver With Hybrid Modulation. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 3770-3780.	5.4	3
23	Analysis and Performance Enhancement of Wireless Power Transfer Systems With Intended Metallic Objects. IEEE Transactions on Power Electronics, 2021, 36, 1388-1398.	7.9	10
24	Low-Cost Single-Switch Bidirectional Wireless Power Transceiver for Peer-to-Peer Charging. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 3781-3790.	5.4	8
25	Current Overshoot Suppression of Wireless Power Transfer Systems With on–off Keying Modulation. IEEE Transactions on Power Electronics, 2021, 36, 2676-2684.	7.9	18
26	Overshoot Damping and Dynamics Improvement in Wireless Power Transfer Systems via Receiver-Side Controller Design. IEEE Transactions on Power Electronics, 2021, , 1-1.	7.9	15
27	Distributed Sliding Mode Observer-Based Secondary Control for DC Microgrids Under Cyber-Attacks. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11, 144-154.	3.6	32
28	Line Resistance Identification-Based Adaptive Droop Control for Distribution Power Loss Minimization of DC Microgrids. , 2021, , .		2
29	Design of A Wireless Power Modulator for Wireless Power Transfer Systems. , 2021, , .		2
30	ON Effect of Right-Half-Plane Zero Present in Buck Converters With Input Current Source in Wireless Power Receiver Systems. IEEE Transactions on Power Electronics, 2021, 36, 6364-6374.	7.9	10
31	Distribution Power Loss Mitigation of Parallel-Connected Distributed Energy Resources in Low-Voltage DC Microgrids Using a Lagrange Multiplier-Based Adaptive Droop Control. IEEE Transactions on Power Electronics, 2021, 36, 9105-9118.	7.9	37
32	Reconfigurable Bidirectional Fully Modular DC–DC Converters Using Switched-Capacitor Modules. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2021, 2, 491-500.	3.9	4
33	Dynamic Response and Stability Margin Improvement of Wireless Power Receiver Systems via Right-Half-Plane Zero Elimination. IEEE Transactions on Power Electronics, 2021, 36, 11196-11207.	7.9	6
34	A Review on Direct Power Control of Pulsewidth Modulation Converters. IEEE Transactions on Power Electronics, 2021, 36, 11984-12007.	7.9	49
35	Simplified Algebraic Estimation Technique for Sensor Count Reduction in Single-Phase Converters With an Active Power Buffer. IEEE Transactions on Power Electronics, 2021, 36, 11444-11455.	7.9	9
36	Capacitor-Clamped <i>LLC</i> Resonant Converter Operating in Capacitive Region for High-Power-Density EV Charger. IEEE Transactions on Power Electronics, 2021, 36, 11456-11468.	7.9	8

#	Article	IF	CITATIONS
37	Sensor Count Reduction for Single-Phase Converters With an Active Power Buffer Using Algebraic Observers. IEEE Transactions on Industrial Electronics, 2021, 68, 10666-10676.	7.9	5
38	Efficient Hybrid-Modulated Single-Stage Wireless Power Receiver With Continuous DC Current. IEEE Transactions on Power Electronics, 2021, 36, 13504-13514.	7.9	5
39	A Generalized Reverse-Electrodialysis Model Incorporating Both Continuous and Recycle Modes for Energy Harvesting From Salinity Gradient Power. IEEE Access, 2021, 9, 71626-71637.	4.2	3
40	Lagrange Multiplier-Based Optimization Control for Distribution Power Loss Minimization of Islanded Three-Phase AC Microgrids. , 2021, , .		1
41	Power Loss Mitigation of Parallel-Connected Distributed Energy Resources in DC Microgrids Using a Dual-Ascent Hierarchical Control. , 2021, , .		7
42	Distributed Linear State Observer (DLSO)-Based Distributed Secondary Control for DC Microgrids Under False Signal Attacks. , 2021, , .		2
43	State-of-Charge Balance Control of Distributed Battery Systems with Distinct State-of-Health in DC Microgrids. , 2021, , .		8
44	New Dynamic Photo-Electro-Thermal Modeling of Light-Emitting Diodes With Phosphor Coating as Light Converter—Part II: Model Parameter Determination and Practical Verification. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 780-793.	5.4	9
45	New Dynamic Photo-Electro-Thermal Modeling of Light-Emitting Diodes With Phosphor Coating as Light Converter Part I: Theory, Analysis, and Modeling. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 771-779.	5.4	13
46	A High-Efficiency DC/DC Converter for High-Voltage-Gain, High-Current Applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 2812-2823.	5.4	22
47	Design Considerations for Voltage Sensorless Control of a PFC Single-Phase Rectifier Without Electrolytic Capacitors. IEEE Transactions on Industrial Electronics, 2020, 67, 1878-1889.	7.9	26
48	A Generalized Controller for Electric-Spring-Based Smart Load With Both Active and Reactive Power Compensation. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 1454-1465.	5.4	28
49	Internal Dynamics Stabilization of Single-Phase Power Converters With Lyapunov-Based Automatic-Power-Decoupling Control. IEEE Transactions on Power Electronics, 2020, 35, 2160-2169.	7.9	23
50	Optimal Electric Spring Allocation for Risk-Limiting Voltage Regulation in Distribution Systems. IEEE Transactions on Power Systems, 2020, 35, 273-283.	6.5	19
51	An Enhanced Multiple Harmonics Analysis Method for Wireless Power Transfer Systems. IEEE Transactions on Power Electronics, 2020, 35, 1205-1216.	7.9	24
52	InGaN RGB Light-Emitting Diodes With Monolithically Integrated Photodetectors for Stabilizing Color Chromaticity. IEEE Transactions on Industrial Electronics, 2020, 67, 5154-5160.	7.9	29
53	Decentralized Control of DC Electric Springs for Storage Reduction in DC Microgrids. IEEE Transactions on Power Electronics, 2020, 35, 4634-4646.	7.9	21
54	A New Geometric Vector Optimization of Predictive Direct Power Control. IEEE Transactions on Power Electronics, 2020, 35, 5427-5436.	7.9	12

#	Article	IF	CITATIONS
55	Integration of Flexible Loads and Electric Spring Using a Three-Phase Inverter. IEEE Transactions on Power Electronics, 2020, 35, 8013-8024.	7.9	10
56	Distributed Electric Spring Based Smart Thermal Loads for Overvoltage Prevention in LV Distributed Network Using Dynamic Consensus Approach. IEEE Transactions on Sustainable Energy, 2020, 11, 2098-2108.	8.8	11
57	High-Frequency Differential Resonant Rectifier with DC Output Voltage Regulation. , 2020, , .		0
58	On Beat Frequency Oscillation of Two-Stage Wireless Power Receivers. IEEE Transactions on Power Electronics, 2020, 35, 12741-12751.	7.9	11
59	A Direct AC-AC Single-Inductor Multiple-Output (SIMO) Converter for Multi-Coil Wireless Power Transfer Applications. , 2020, , .		2
60	An Improved Deadbeat Predictive Direct Power Control Using Geometrical Modulation. , 2020, , .		2
61	Value of Point-of-Load Voltage Control for Enhanced Frequency Response in Future GB Power System. IEEE Transactions on Smart Grid, 2020, 11, 4938-4948.	9.0	4
62	Design, Analysis, and Experimental Verification of a Ball-Joint Structure With Constant Coupling for Capacitive Wireless Power Transfer. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 3582-3591.	5.4	12
63	Fast Hardware Approach to Determining Mutual Coupling of Series–Series-Compensated Wireless Power Transfer Systems With Active Rectifiers. IEEE Transactions on Power Electronics, 2020, 35, 11026-11038.	7.9	41
64	Reducing Distribution Power Loss of Islanded AC Microgrids Using Distributed Electric Springs With Predictive Control. IEEE Transactions on Industrial Electronics, 2020, 67, 9001-9011.	7.9	30
65	Single-Inductor Multiple-Output Inverter With Precise and Independent Output Voltage Regulation. IEEE Transactions on Power Electronics, 2020, 35, 11222-11234.	7.9	3
66	Stability of Isolated Microgrids With Renewable Generation and Smart Loads. IEEE Transactions on Sustainable Energy, 2020, 11, 2845-2854.	8.8	20
67	Means of Reducing Number of Sensors in Single-Phase Power Converters with an Active Power Buffer. , 2020, , .		5
68	Resonant-Inductive-Boosting DC-DC Converter with Very High Voltage Gain. , 2020, , .		4
69	Capacitor-Clamped LLC Resonant Converter for Constant Power EV Charging with Fixed Operation Frequency. , 2020, , .		3
70	Single-Stage Regulated Resonant WPT Receiver With Low Input Harmonic Distortion. IEEE Transactions on Power Electronics, 2020, 35, 6820-6829.	7.9	12
71	Virtual Inertia From Smart Loads. IEEE Transactions on Smart Grid, 2020, 11, 4311-4320.	9.0	31
72	Review of Maximum-Efficiency-Operation Techniques. CPSS Power Electronics Series, 2020, , 77-98.	0.2	0

#	Article	IF	CITATIONS
73	Distributed Higher Order Differentiator-Based Distributed Secondary Control for DC Microgrids Under Cyber-Attacks. , 2020, , .		1
74	Circuit Theoretic Considerations of LED Driving: Voltage-Source Versus Current-Source Driving. IEEE Transactions on Power Electronics, 2019, 34, 4689-4702.	7.9	36
75	Electrical and Thermal Effects of Light-Emitting Diodes on Signal-to-Noise Ratio in Visible Light Communication. IEEE Transactions on Industrial Electronics, 2019, 66, 2785-2794.	7.9	10
76	Hybrid Electric Springs for Grid-Tied Power Control and Storage Reduction in AC Microgrids. IEEE Transactions on Power Electronics, 2019, 34, 3214-3225.	7.9	34
77	Buck-Boost Single-Inductor Multiple-Output High-Frequency Inverters for Medium-Power Wireless Power Transfer. IEEE Transactions on Power Electronics, 2019, 34, 3457-3473.	7.9	16
78	Sliding-Mode-Based Direct Power Control of Dual-Active-Bridge DC-DC Converters. , 2019, , .		28
79	Mitigating Distribution Power Losses of Standalone AC Microgrids Using Particle-Swarm-Optimization Control for Distributed Battery Systems. , 2019, , .		2
80	Single-Inductor Multiple-Output Buck Hybrid Converter with Simultaneous AC and DC Outputs for Multi-Coil Wireless Power Transfer Applications. , 2019, , .		6
81	Power Loss Analysis of a Back-to-Back Switching Single-Inductor Multiple-Output Inverter. , 2019, , .		3
82	Single-Switch-Regulated Resonant WPT Receiver. IEEE Transactions on Power Electronics, 2019, 34, 10386-10391.	7.9	20
83	Comparison of pointâ€ofâ€load versus midâ€feeder compensation in LV distribution networks with high penetration of solar photovoltaic generation and electric vehicle charging stations. IET Smart Grid, 2019, 2, 283-292.	2.2	15
84	Granular loadâ€side frequency control with electric spring aggregators and leader–follower consensus. IET Generation, Transmission and Distribution, 2019, 13, 1700-1708.	2.5	4
85	A comparative study on slim 3-D receiver coil structures for omnidirectional wireless power transfer applications. Wireless Power Transfer, 2019, 6, 85-96.	1.1	Ο
86	Front-End Parameter Monitoring Method Based on Two-Layer Adaptive Differential Evolution for SS-Compensated Wireless Power Transfer Systems. IEEE Transactions on Industrial Informatics, 2019, 15, 6101-6113.	11.3	63
87	High-Power-Density Single-Phase Three-Level Flying-Capacitor Buck PFC Rectifier. IEEE Transactions on Power Electronics, 2019, 34, 10833-10844.	7.9	38
88	A Gallium Nitride (GaN)-Based Single-Inductor Multiple-Output (SIMO) Inverter With Multi-Frequency AC Outputs. IEEE Transactions on Power Electronics, 2019, 34, 10856-10873.	7.9	18
89	Efficient Improvement of Photovoltaic-Battery Systems in Standalone DC Microgrids Using a Local Hierarchical Control for the Battery System. IEEE Transactions on Power Electronics, 2019, 34, 10796-10807.	7.9	60
90	Towards predicting intracellular radiofrequency radiation effects. PLoS ONE, 2019, 14, e0213286.	2.5	7

#	Article	IF	CITATIONS
91	Multimode LLC Resonant DCâ^'DC Converters for Wide Range Input Voltage. , 2019, , .		2
92	Analysis and Design of the Class-E Resonant Regulated Wireless Power Receiver. , 2019, , .		0
93	Communication-Free Control Scheme for Qi-Compliant Wireless Power Transfer Systems. , 2019, , .		9
94	Adaptive Current Sharing of Distributed Battery Systems in DC Microgrids Using Adaptive Virtual Resistance-Based Droop Control. , 2019, , .		23
95	Use of Integrated Photovoltaic-Electric Spring System as a Power Balancer in Power Distribution Networks. IEEE Transactions on Power Electronics, 2019, 34, 5312-5324.	7.9	33
96	A Single-Phase Three-Level Flying-Capacitor PFC Rectifier Without Electrolytic Capacitors. IEEE Transactions on Power Electronics, 2019, 34, 6411-6424.	7.9	30
97	On Nonlinear Control of Single-Phase Converters With Active Power Decoupling Function. IEEE Transactions on Power Electronics, 2019, 34, 5903-5915.	7.9	44
98	Minimum Active Switch Requirements for Single-Phase PFC Rectifiers Without Electrolytic Capacitors. IEEE Transactions on Power Electronics, 2019, 34, 5524-5536.	7.9	24
99	A General Design Procedure for Multi-Parallel Modular Grid-Tied Inverters System to Prevent Common and Interactive Instability. IEEE Transactions on Power Electronics, 2019, 34, 6025-6030.	7.9	18
100	Improving the Performance of Direct Power Control Using Duty Cycle Optimization. IEEE Transactions on Power Electronics, 2019, 34, 9213-9223.	7.9	23
101	Multiphase-Interleaved High Step-Up DC/DC Resonant Converter for Wide Load Range. IEEE Transactions on Power Electronics, 2019, 34, 7703-7718.	7.9	31
102	Dynamic Optical Power Measurements and Modeling of Light-Emitting Diodes Based on a Photodetector System and Photo-Electro-Thermal Theory. IEEE Transactions on Power Electronics, 2019, 34, 10058-10068.	7.9	10
103	Practical Evaluation of Droop and Consensus Control of Distributed Electric Springs for Both Voltage and Frequency Regulation in Microgrid. IEEE Transactions on Power Electronics, 2019, 34, 6947-6959.	7.9	35
104	Flexible Demand Through Point-of-Load Voltage Control in Domestic Sector. IEEE Transactions on Smart Grid, 2019, 10, 4662-4672.	9.0	10
105	Smart Loads for Improving the Fault-Ride-Through Capability of Fixed-Speed Wind Generators in Microgrids. IEEE Transactions on Smart Grid, 2019, 10, 661-669.	9.0	12
106	Small Signal Stability Analysis of Distribution Networks With Electric Springs. IEEE Transactions on Smart Grid, 2019, 10, 1543-1552.	9.0	16
107	Dynamic Modular Modeling of Smart Loads Associated With Electric Springs and Control. IEEE Transactions on Power Electronics, 2018, 33, 10071-10085.	7.9	18
108	Online Detection of Fundamental and Interharmonics in AC Mains for Parallel Operation of Multiple Grid-Connected Power Converters. IEEE Transactions on Power Electronics, 2018, 33, 9318-9330.	7.9	14

#	Article	IF	CITATIONS
109	Current-Source-Mode Single-Inductor Multiple-Output LED Driver With Single Closed-Loop Control Achieving Independent Dimming Function. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6, 1198-1209.	5.4	46
110	Technical and safety challenges in emerging trends of near-field wireless power transfer industrial guidelines. IEEE Electromagnetic Compatibility Magazine, 2018, 7, 78-86.	0.1	19
111	Reverse Electrodialysis Energy Harvesting System Using High-Gain Step-Up DC/DC Converter. IEEE Transactions on Sustainable Energy, 2018, 9, 1578-1587.	8.8	10
112	Small-Signal Model and Stability of Electric Springs in Power Grids. IEEE Transactions on Smart Grid, 2018, 9, 857-865.	9.0	51
113	Ball-Joint Wireless Power Transfer Systems. IEEE Transactions on Power Electronics, 2018, 33, 65-72.	7.9	43
114	Estimation of Aggregate Reserve With Point-of-Load Voltage Control. IEEE Transactions on Smart Grid, 2018, 9, 4649-4658.	9.0	9
115	Mitigating Distribution Power Loss of DC Microgrids With DC Electric Springs. IEEE Transactions on Smart Grid, 2018, 9, 5897-5906.	9.0	65
116	Hybrid-DC Electric Springs for DC Voltage Regulation and Harmonic Cancellation in DC Microgrids. IEEE Transactions on Power Electronics, 2018, 33, 1167-1177.	7.9	40
117	Adaptive Reference Model Predictive Control With Improved Performance for Voltage-Source Inverters. IEEE Transactions on Control Systems Technology, 2018, 26, 724-731.	5.2	48
118	Enhanced Automatic-Power-Decoupling Control Method for Single-Phase AC-to-DC Converters. IEEE Transactions on Power Electronics, 2018, 33, 1816-1828.	7.9	65
119	Parabolic-Modulated Sliding-Mode Voltage Control of a Buck Converter. IEEE Transactions on Industrial Electronics, 2018, 65, 844-854.	7.9	36
120	A Novel Electric Insulation String Structure With High-Voltage Insulation and Wireless Power Transfer Capabilities. IEEE Transactions on Power Electronics, 2018, 33, 87-96.	7.9	96
121	Plug-and-Play Voltage Ripple Mitigator for DC Links in Hybrid AC–DC Power Grids With Local Bus-Voltage Control. IEEE Transactions on Industrial Electronics, 2018, 65, 687-698.	7.9	51
122	Maximum Energy Efficiency Operation of Series-Series Resonant Wireless Power Transfer Systems Using On-Off Keying Modulation. IEEE Transactions on Power Electronics, 2018, 33, 3595-3603.	7.9	122
123	A General Approach to Programmable and Reconfigurable Emulation of Power Impedances. IEEE Transactions on Power Electronics, 2018, 33, 259-271.	7.9	30
124	A Configuration of Storage System for DC Microgrids. IEEE Transactions on Power Electronics, 2018, 33, 3722-3733.	7.9	57
125	Optimal Design of Integrated Magnetics for Differential Rectifiers and Inverters. IEEE Transactions on Power Electronics, 2018, 33, 4616-4626.	7.9	9
126	Low-Power Multichannel Wireless Transmitter. IEEE Transactions on Power Electronics, 2018, 33, 5016-5028.	7.9	16

#	Article	IF	CITATIONS
127	Reconfigurable Wireless Power Transfer Systems With High Energy Efficiency Over Wide Load Range. IEEE Transactions on Power Electronics, 2018, 33, 6379-6390.	7.9	48
128	An Adaptive-Observer-Based Robust Estimator of Multi-sinusoidal Signals. IEEE Transactions on Automatic Control, 2018, 63, 1618-1631.	5.7	16
129	Dynamic Improvement of Series–Series Compensated Wireless Power Transfer Systems Using Discrete Sliding Mode Control. IEEE Transactions on Power Electronics, 2018, 33, 6351-6360.	7.9	145
130	Single-Phase LED Drivers With Minimal Power Processing, Constant Output Current, Input Power Factor Correction, and Without Electrolytic Capacitor. IEEE Transactions on Power Electronics, 2018, 33, 6159-6170.	7.9	48
131	Opportunities for Performance Improvement of Single-Phase Power Converters through Enhanced Automatic-Power-Decoupling Control. , 2018, , .		3
132	Comparative Study on Front-End Parameter Identification Methods for Wireless Power Transfer Without Wireless Communication Systems. , 2018, , .		6
133	Small Signal Stability Analysis of Distribution Networks with Electric Springs. , 2018, , .		3
134	A Frequency-Sweep Based Load Monitoring Method for Weakly-Coupled Series-Series Compensated Wireless Power Transfer Systems. , 2018, , .		19
135	Nonisolated Harmonics-Boosted Resonant DC/DC Converter With High-Step-Up Gain. IEEE Transactions on Power Electronics, 2018, 33, 7770-7781.	7.9	24
136	Achieving Multiple Functions of Three-Phase Electric Springs in Unbalanced Three-Phase Power Systems Using the Instantaneous Power Theory. IEEE Transactions on Power Electronics, 2018, 33, 5784-5795.	7.9	29
137	Mathematic Analysis of Omnidirectional Wireless Power Transfer—Part-II Three-Dimensional Systems. IEEE Transactions on Power Electronics, 2017, 32, 613-624.	7.9	106
138	Use of Adaptive Thermal Storage System as Smart Load for Voltage Control and Demand Response. IEEE Transactions on Smart Grid, 2017, 8, 1231-1241.	9.0	41
139	Mathematical Analysis of Omnidirectional Wireless Power Transfer—Part-I: Two-Dimensional Systems. IEEE Transactions on Power Electronics, 2017, 32, 625-633.	7.9	63
140	Rapid Frequency Response From Smart Loads in Great Britain Power System. IEEE Transactions on Smart Grid, 2017, 8, 2160-2169.	9.0	71
141	Precise Color Control of Red-Green-Blue Light-Emitting Diode Systems. IEEE Transactions on Power Electronics, 2017, 32, 3063-3074.	7.9	13
142	A Fast-Convergent Modulation Integral Observer for Online Detection of the Fundamental and Harmonics in Grid-Connected Power Electronics Systems. IEEE Transactions on Power Electronics, 2017, 32, 2596-2607.	7.9	23
143	DC Electric Springs—A Technology for Stabilizing DC Power Distribution Systems. IEEE Transactions on Power Electronics, 2017, 32, 1088-1105.	7.9	81
144	Nonintrusive Power Measurement Method With Phase Detection for Low-Cost Smart Meters. IEEE Transactions on Industrial Electronics, 2017, 64, 3962-3969.	7.9	13

#	Article	IF	CITATIONS
145	Pinched hysteresis loops and symmetry. IET Science, Measurement and Technology, 2017, 11, 134-140.	1.6	1
146	Distributed Control of Multiple Electric Springs for Voltage Control in Microgrid. IEEE Transactions on Smart Grid, 2017, 8, 1350-1359.	9.0	64
147	Printed circuit board planar current transformer for GaN active diode. , 2017, , .		3
148	Enhanced digital PI control with state-variable feedback loop for DC electric springs. , 2017, , .		6
149	A constant-frequency parabolic-modulation-based sliding mode controller for buck converters. , 2017, , .		3
150	Topology-Transition Control For Wide-Input-Voltage-Range Efficiency Improvement and Fast Current Regulation in Automotive LED Applications. IEEE Transactions on Industrial Electronics, 2017, 64, 5883-5893.	7.9	34
151	Critical Bus Voltage Support in Distribution Systems With Electric Springs and Responsibility Sharing. IEEE Transactions on Power Systems, 2017, 32, 3584-3593.	6.5	47
152	A Comprehensive Analysis and Control Strategy for Nullifying Negative- and Zero-Sequence Currents in an Unbalanced Three-Phase Power System Using Electric Springs. IEEE Transactions on Power Electronics, 2017, 32, 7635-7650.	7.9	16
153	Use of Smart Loads for Power Quality Improvement. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5, 504-512.	5.4	65
154	Dynamic improvement of wireless power transfer systems with maximum energy efficiency tracking by sliding mode control. , 2017, , .		3
155	A Single-Stage Two-Switch PFC Rectifier With Wide Output Voltage Range and Automatic AC Ripple Power Decoupling. IEEE Transactions on Power Electronics, 2017, 32, 6971-6982.	7.9	50
156	Graphical modelling of pinched hysteresis loops of memristors. IET Science, Measurement and Technology, 2017, 11, 86-96.	1.6	0
157	An Off-line Single-Inductor Multiple-Output LED Driver With High Dimming Precision and Full Dimming Range. IEEE Transactions on Power Electronics, 2017, 32, 4716-4727.	7.9	53
158	Charging Time Control of Wireless Power Transfer Systems Without Using Mutual Coupling Information and Wireless Communication System. IEEE Transactions on Industrial Electronics, 2017, 64, 228-235.	7.9	70
159	Extending the Operating Range of Electric Spring Using Back-To-Back Converter: Hardware Implementation and Control. IEEE Transactions on Power Electronics, 2017, 32, 5171-5179.	7.9	72
160	Using consensus control for reactive power sharing of distributed electric springs. , 2017, , .		4
161	Voltage and frequency control of electric spring based smart loads. , 2016, , .		20
162	A two-switch buck-boost PFC rectifier with automatic AC power decoupling capability. , 2016, , .		2

#	Article	IF	CITATIONS
163	Precise and full-range dimming control for an offline single-inductor-multiple-output LED driver. , 2016, , .		3
164	DC electric springs with modified droop control for storage reduction in DC microgrids. , 2016, , .		1
165	Basic circuit theoretic considerations of LED driving: Voltage-source versus current-source driving. , 2016, , .		8
166	Instantaneous frequency regulation of microgrids via power shedding of smart load and power limiting of renewable generation. , 2016, , .		7
167	Smart loads for voltage control in distribution networks. , 2016, , .		8
168	LLC resonant converter design for bendable power converter. , 2016, , .		5
169	Adaptive reference model predictive control for power electronics. , 2016, , .		3
170	Magnetic Resonance for Wireless Power Transfer [A Look Back]. IEEE Power Electronics Magazine, 2016, 3, 14-31.	0.7	74
171	Compact modular switched-capacitor DC/DC converters with exponential voltage gain. , 2016, , .		2
172	A new energy harvesting and wireless power transfer system for Smart Grid. , 2016, , .		17
173	A unified converter topology for Electric Spring. , 2016, , .		2
174	Comparison of primary frequency control using two smart load types. , 2016, , .		6
175	Electric Springs with Coordinated Battery Management for Reducing Voltage and Frequency Fluctuations in Microgrids. IEEE Transactions on Smart Grid, 2016, , 1-1.	9.0	46
176	Enhancing Resilience of Microgrids with Electric Springs. IEEE Transactions on Smart Grid, 2016, , 1-1.	9.0	28
177	Multifunctional DC Electric Springs for Improving Voltage Quality of DC Grids. IEEE Transactions on Smart Grid, 2016, , 1-1.	9.0	34
178	Distributed voltage control with electric springs: Comparison with STATCOM. , 2016, , .		2
179	A plug-and-play ripple mitigation approach for DC-links in hybrid systems. , 2016, , .		15
180	Simultaneous voltage and current compensation of the 3-phase electric spring with decomposed voltage control. , 2016, , .		1

#	Article	IF	CITATIONS
181	Reduction of storage capacity in DC microgrids using PV-embedded series DC electric springs. , 2016, , .		8
182	Morphing switched-capacitor step-down DC-DC converters with variable conversion ratio. , 2016, , .		1
183	Characterization, modeling, and analysis of organic light-emitting diodes with different structures. IEEE Transactions on Power Electronics, 2016, 31, 581-592.	7.9	21
184	A survey, classification, and critical review of light-emitting diode drivers. IEEE Transactions on Power Electronics, 2016, 31, 1503-1516.	7.9	197
185	Front-End Monitoring of the Mutual Inductance and Load Resistance in a Series–Series Compensated Wireless Power Transfer System. IEEE Transactions on Power Electronics, 2016, 31, 7339-7352.	7.9	136
186	Morphing switched-capacitor converters with variable conversion ratio. IEEE Transactions on Power Electronics, 2016, 31, 5680-5693.	7.9	3
187	Modeling and Analysis of the Bendable Transformer. IEEE Transactions on Power Electronics, 2016, 31, 6450-6460.	7.9	21
188	Single-Stage AC/DC Single-Inductor Multiple-Output LED Drivers. IEEE Transactions on Power Electronics, 2016, 31, 5837-5850.	7.9	67
189	Integration of an Active Filter and a Single-Phase AC/DC Converter With Reduced Capacitance Requirement and Component Count. IEEE Transactions on Power Electronics, 2016, 31, 4121-4137.	7.9	162
190	Precise Dimming and Color Control of LED Systems Based on Color Mixing. IEEE Transactions on Power Electronics, 2016, 31, 65-80.	7.9	68
191	Front-end monitoring of multiple loads in wireless power transfer systems without wireless communication systems. IEEE Transactions on Power Electronics, 2016, 31, 2510-2517.	7.9	71
192	Decoupled Power Angle and Voltage Control of Electric Springs. IEEE Transactions on Power Electronics, 2016, 31, 1216-1229.	7.9	84
193	A parallel prefiltering approach for the identification of a biased sinusoidal signal: Theory and experiments. International Journal of Adaptive Control and Signal Processing, 2015, 29, 1591-1608.	4.1	11
194	Primary Frequency Control Contribution From Smart Loads Using Reactive Compensation. IEEE Transactions on Smart Grid, 2015, 6, 2356-2365.	9.0	101
195	Auxiliary Circuits for Power Flow Control in Multifrequency Wireless Power Transfer Systems With Multiple Receivers. IEEE Transactions on Power Electronics, 2015, 30, 5902-5910.	7.9	133
196	Non-linear feedback control of robust bi-color LED lighting. , 2015, , .		1
197	[From the Guest Editor]. IEEE Circuits and Systems Magazine, 2015, 15, 4-4.	2.3	0
198	Omni-directional wireless power transfer systems using discrete magnetic field vector control. , 2015, , .		5

#	Article	IF	CITATIONS
199	Power and efficiency of 2-D omni-directional wireless power transfer systems. , 2015, , .		6
200	Smart Loads for Voltage Control in Distribution Networks. IEEE Transactions on Smart Grid, 2015, , 1-10.	9.0	42
201	Control of electric springs with coordinated battery management. , 2015, , .		3
202	Voltage Support for Critical Buses with Consensus Control of Electric Springs in Distribution Systems. IFAC-PapersOnLine, 2015, 48, 173-178.	0.9	12
203	Distributed grid voltage and utility frequency stabilization via shunt-type electric springs. , 2015, , .		4
204	Stability design of electric springs in power grids. , 2015, , .		2
205	Power angle and amplitude decoupling control method for electric springs and static synchronous series compensators. , 2015, , .		1
206	The First Man-Made Memristor: Circa 1801 [Scanning Our Past]. Proceedings of the IEEE, 2015, 103, 131-136.	21.3	11
207	Mitigating Voltage and Frequency Fluctuation in Microgrids Using Electric Springs. IEEE Transactions on Smart Grid, 2015, 6, 508-515.	9.0	152
208	Electric Springs for Reducing Power Imbalance in Three-Phase Power Systems. IEEE Transactions on Power Electronics, 2015, 30, 3601-3609.	7.9	113
209	A Systematic Approach for Load Monitoring and Power Control in Wireless Power Transfer Systems Without Any Direct Output Measurement. IEEE Transactions on Power Electronics, 2015, 30, 1657-1667.	7.9	138
210	Nonlinear dimming and correlated color temperature control of bicolor white LED systems. IEEE Transactions on Power Electronics, 2015, 30, 6934-6947.	7.9	44
211	DC electric springs - An emerging technology for DC grids. , 2015, , .		20
212	Distributed Widely Linear Kalman Filtering for Frequency Estimation in Power Networks. IEEE Transactions on Signal and Information Processing Over Networks, 2015, 1, 45-57.	2.8	44
213	Ultralow-Loss Passive T5 Fluorescent Lamp Ballasts for Subzero Temperature Operation. IEEE Transactions on Power Electronics, 2015, 30, 5792-5799.	7.9	1
214	Basic Control Principles of Omni-Directional Wireless Power Transfer. IEEE Transactions on Power Electronics, 2015, , 1-1.	7.9	68
215	InGaN light-emitting diode stripes with reduced luminous exitance. Optics Express, 2015, 23, 15021.	3.4	5
216	Bi-directional active-filter-integrated AC/DC converter without electrolytic capacitor and extra		3

power switches. , 2015, , .

#	Article	IF	CITATIONS
217	Electric springs for improving transient stability of micro-grids in islanding operations. , 2015, , .		4
218	Droop control of distributed electric springs for stabilizing future power grid. , 2015, , .		2
219	Reduction of Thermal Resistance and Optical Power Loss Using Thin-Film Light-Emitting Diode (LED) Structure. IEEE Transactions on Industrial Electronics, 2015, 62, 6925-6933.	7.9	10
220	Sliding mode control for improving the performance of PV inverter with MPPT $\hat{a} \in "$ A comparison between SM and PI control. , 2015, , .		7
221	Series and shunt DC electric springs. , 2015, , .		14
222	Nonlinear dynamic power tracking of low-power wind energy conversion system. IEEE Transactions on Power Electronics, 2015, 30, 5223-5236.	7.9	47
223	Power Flow Analysis and Critical Design Issues of Retrofit Light-Emitting Diode (LED) Light Bulb. IEEE Transactions on Power Electronics, 2015, 30, 3830-3840.	7.9	10
224	Direct AC/DC Rectifier With Mitigated Low-Frequency Ripple Through Inductor-Current Waveform Control. IEEE Transactions on Power Electronics, 2015, 30, 4336-4348.	7.9	69
225	A Fast Method for Generating Time-Varying Magnetic Field Patterns of Mid-Range Wireless Power Transfer Systems. IEEE Transactions on Power Electronics, 2015, 30, 1513-1520.	7.9	14
226	Distributed Voltage Control with Electric Springs: Comparison with STATCOM. IEEE Transactions on Smart Grid, 2015, 6, 209-219.	9.0	95
227	Maximum Energy Efficiency Tracking for Wireless Power Transfer Systems. IEEE Transactions on Power Electronics, 2015, 30, 4025-4034.	7.9	366
228	A Methodology for Making a Three-Coil Wireless Power Transfer System More Energy Efficient Than a Two-Coil Counterpart for Extended Transfer Distance. IEEE Transactions on Power Electronics, 2015, 30, 933-942.	7.9	190
229	Direct AC/DC rectifier with mitigated low-frequency ripple through waveform control. , 2014, , .		10
230	Parameter identification of wireless power transfer systems using input voltage and current. , 2014, , .		30
231	Chromatic, Photometric and Thermal Modeling of LED Systems With Nonidentical LED Devices. IEEE Transactions on Power Electronics, 2014, 29, 6636-6647.	7.9	29
232	Passive Radio-Frequency Repeater for Enhancing Signal Reception and Transmission in a Wireless Charging Platform. IEEE Transactions on Industrial Electronics, 2014, 61, 1750-1757.	7.9	31
233	Color Variation Reduction of GaN-Based White Light-Emitting Diodes Via Peak-Wavelength Stabilization. IEEE Transactions on Power Electronics, 2014, 29, 3709-3719.	7.9	41
234	An Adaptive Observer-Based Switched Methodology for the Identification of a Perturbed Sinusoidal Signal: Theory and Experiments. IEEE Transactions on Signal Processing, 2014, 62, 6355-6365.	5.3	24

#	Article	IF	CITATIONS
235	A Critical Review of Recent Progress in Mid-Range Wireless Power Transfer. IEEE Transactions on Power Electronics, 2014, 29, 4500-4511.	7.9	1,207
236	Use of Frequency-Selective Surface for Suppressing Radio-Frequency Interference from Wireless Charging Pads. IEEE Transactions on Industrial Electronics, 2014, 61, 3969-3977.	7.9	34
237	Dynamic Prediction of Correlated Color Temperature and Color Rendering Index of Phosphor-Coated White Light-Emitting Diodes. IEEE Transactions on Industrial Electronics, 2014, 61, 784-797.	7.9	58
238	Reducing three-phase power imbalance with electric springs. , 2014, , .		10
239	Low-power wind energy conversion system with variable structure control for DC grids. , 2014, , .		0
240	Gas Discharge Lamps Are Volatile Memristors. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61, 2066-2073.	5.4	34
241	Monitoring of multiple loads in wireless power transfer systems without direct output feedback. , 2014, , .		5
242	Electric spring for power quality improvement. , 2014, , .		49
243	Self-Configurable Current-Mirror Circuit With Short-Circuit and Open-Circuit Fault Tolerance for Balancing Parallel Light-Emitting Diode (LED) String Currents. IEEE Transactions on Power Electronics, 2014, 29, 5498-5507.	7.9	23
244	Two- and Three-Dimensional Omnidirectional Wireless Power Transfer. IEEE Transactions on Power Electronics, 2014, 29, 4470-4474.	7.9	170
245	Dynamic Modeling of Electric Springs. IEEE Transactions on Smart Grid, 2014, 5, 2450-2458.	9.0	119
246	Critical design issues of retrofit light-emitting diode (LED) light bulb. , 2014, , .		6
247	Hardware and Control Implementation of Electric Springs for Stabilizing Future Smart Grid With Intermittent Renewable Energy Sources. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2013, 1, 18-27.	5.4	144
248	Droop Control of Distributed Electric Springs for Stabilizing Future Power Grid. IEEE Transactions on Smart Grid, 2013, 4, 1558-1566.	9.0	109
249	Wireless power transfer: A brief review & update. , 2013, , .		8
250	General Steady-State Analysis and Control Principle of Electric Springs With Active and Reactive Power Compensations. IEEE Transactions on Power Electronics, 2013, 28, 3958-3969.	7.9	215
251	Planar Wireless Charging Technology for Portable Electronic Products and Qi. Proceedings of the IEEE, 2013, 101, 1290-1301.	21.3	467
252	Reduction of Energy Storage Requirements in Future Smart Grid Using Electric Springs. IEEE Transactions on Smart Grid, 2013, 4, 1282-1288.	9.0	136

#	Article	IF	CITATIONS
253	A review and classification of LED ballasts. , 2013, , .		18
254	Use of Hooke's law for stabilizing future smart grid — The electric spring concept. , 2013, , .		27
255	Load monitoring and output power control of a wireless power transfer system without any wireless communication feedback. , 2013, , .		14
256	General Analysis on the Use of Tesla's Resonators in Domino Forms for Wireless Power Transfer. IEEE Transactions on Industrial Electronics, 2013, 60, 261-270.	7.9	296
257	Investigating the scope for electroplated magnetic alloys in shielding of PCBs. , 2012, , .		0
258	An Extended Photoelectrothermal Theory for LED Systems: A Tutorial From Device Characteristic to System Design for General Lighting. IEEE Transactions on Power Electronics, 2012, 27, 4571-4583.	7.9	60
259	On the relationship of quality factor and hollow winding structure of coreless printed spiral winding (CPSW) inductor. IEEE Transactions on Power Electronics, 2012, 27, 3050-3056.	7.9	36
260	Methodology for developing a low-pressure discharge lamp model with electron density variation and ambipolar diffusion. IET Science, Measurement and Technology, 2012, 6, 229.	1.6	4
261	Wireless power domino-resonator systems with noncoaxial axes and circular structures. IEEE Transactions on Power Electronics, 2012, 27, 4750-4762.	7.9	151
262	Estimation of Optical Power and Heat-Dissipation Coefficient for the Photo-Electro-Thermal Theory for LED Systems. IEEE Transactions on Power Electronics, 2012, 27, 2176-2183.	7.9	55
263	Novel Self-Configurable Current-Mirror Techniques for Reducing Current Imbalance in Parallel Light-Emitting Diode (LED) Strings. IEEE Transactions on Power Electronics, 2012, 27, 2153-2162.	7.9	72
264	Effects of Magnetic Coupling of Nonadjacent Resonators on Wireless Power Domino-Resonator Systems. IEEE Transactions on Power Electronics, 2012, 27, 1905-1916.	7.9	256
265	A New Noncontact Method for the Prediction of Both Internal Thermal Resistance and Junction Temperature of White Light-Emitting Diodes. IEEE Transactions on Power Electronics, 2012, 27, 2184-2192.	7.9	27
266	Elimination of an Electrolytic Capacitor in AC/DC Light-Emitting Diode (LED) Driver With High Input Power Factor and Constant Output Current. IEEE Transactions on Power Electronics, 2012, 27, 1598-1607.	7.9	214
267	Electric Springs—A New Smart Grid Technology. IEEE Transactions on Smart Grid, 2012, 3, 1552-1561.	9.0	377
268	Dynamic Photoelectrothermal Theory for Light-Emitting Diode Systems. IEEE Transactions on Industrial Electronics, 2012, 59, 1751-1759.	7.9	55
269	Design of a Single Ultra-Low-Loss Magnetic Ballast for a Wide Range of T5 High-Efficiency Fluorescent Lamps. IEEE Transactions on Industrial Electronics, 2012, 59, 1849-1858.	7.9	11
270	Novel Silicon-Embedded Coreless Transformer for On-Chip Isolated Signal Transfer. IEEE Magnetics Letters, 2011, 2, 6500103-6500103.	1.1	13

#	Article	IF	CITATIONS
271	A novel silicon-embedded coreless transformer for isolated DC-DC converter application. , 2011, , .		7
272	A "Class-A2―Ultra-Low-Loss Magnetic Ballast for T5 Fluorescent Lamps—A New Trend for Sustainable Lighting Technology. IEEE Transactions on Power Electronics, 2011, 26, 622-629.	7.9	9
273	Printed Spiral Winding Inductor With Wide Frequency Bandwidth. IEEE Transactions on Power Electronics, 2011, 26, 2936-2945.	7.9	48
274	A Dimmable Light-Emitting Diode (LED) Driver With Mag-Amp Postregulators for Multistring Applications. IEEE Transactions on Power Electronics, 2011, 26, 1714-1722.	7.9	76
275	Generalized Self-Driven AC–DC Synchronous Rectification Techniques for Single- and Multiphase Systems. IEEE Transactions on Industrial Electronics, 2011, 58, 3287-3297.	7.9	6
276	A Novel Single-Layer Winding Array and Receiver Coil Structure for Contactless Battery Charging Systems With Free-Positioning and Localized Charging Features. IEEE Transactions on Industrial Electronics, 2011, 58, 4136-4144.	7.9	225
277	Modeling of Dimmable Fluorescent Lamp Including the Tube Temperature Effects. IEEE Transactions on Industrial Electronics, 2011, 58, 4145-4152.	7.9	12
278	A Design Methodology for Smart LED Lighting Systems Powered By Weakly Regulated Renewable Power Grids. IEEE Transactions on Smart Grid, 2011, 2, 548-554.	9.0	73
279	Comparative Study on the Structural Designs of LED Devices and Systems Based on the General Photo-Electro-Thermal Theory. IEEE Transactions on Power Electronics, 2010, 25, 507-513.	7.9	52
280	Comparative study on power conversion methods for wireless battery charging platform. , 2010, , .		25
281	Generalized self-driven AC-DC synchronous rectification techniques for single- & multiphase systems. , 2010, , .		0
282	Bidirectional communication techniques for wireless battery charging systems & portable consumer electronics. , 2010, , .		21
283	A "Class-A2" ultra-low-loss magnetic ballast for T5 fluorescent lamps. , 2010, , .		2
284	A dimmable light-emitting diode (LED) driver with cascaded mag-amp postregulators for multistring applications. , 2010, , .		6
285	A Novel Passive Offline LED Driver With Long Lifetime. IEEE Transactions on Power Electronics, 2010, 25, 2665-2672.	7.9	162
286	A novel passive off-line light-emitting diode (LED) driver with long lifetime. , 2010, , .		34
287	Self-driven AC-DC synchronous rectifier for power applications: A direct energy-efficient replacement for traditional diode rectifier. , 2010, , .		4
288	Relationship of quality factor and hollow winding structure of Coreless Printed Spiral Winding (CPSW) inductor. , 2010, , .		1

#	Article	IF	CITATIONS
289	An Improved Semi-theoretical Fluorescent Lamp Model for Dimmable Applications. , 2009, , .		3
290	Dynamic control of a light-emitting diode system based on the general photo-electro-thermal theory. , 2009, , .		4
291	A simple physical low pressure discharge lamp model. , 2009, , .		5
292	Comparative study on the structural designs of led devices & systems based on the general photo-electro-thermal theory. , 2009, , .		3
293	A Simple Method for Comparative Study on the Thermal Performance of LEDs and Fluorescent Lamps. IEEE Transactions on Power Electronics, 2009, 24, 1811-1818.	7.9	56
294	Energy Saving of Large-Scale High-Intensity-Discharge Lamp Lighting Networks Using a Central Reactive Power Control System. IEEE Transactions on Industrial Electronics, 2009, 56, 3069-3078.	7.9	51
295	A Generalized Theory of Boundary Control for a Single-Phase Multilevel Inverter Using Second-Order Switching Surface. IEEE Transactions on Power Electronics, 2009, 24, 2298-2313.	7.9	41
296	A General Photo-Electro-Thermal Theory for Light Emitting Diode (LED) Systems. IEEE Transactions on Power Electronics, 2009, 24, 1967-1976.	7.9	216
297	Mutual Inductance Calculation of Movable Planar Coils on Parallel Surfaces. IEEE Transactions on Power Electronics, 2009, 24, 1115-1123.	7.9	129
298	Automatic Lamp Detection and Operation for Warm-Start Tubular Fluorescent Lamps. IEEE Transactions on Power Electronics, 2009, 24, 2933-2941.	7.9	14
299	Current source ballast for high power lighting emitting diodes without electrolytic capacitor. , 2008, , .		88
300	Optimal Design of a Hybrid Winding Structure for Planar Contactless Battery Charging Platform. IEEE Transactions on Power Electronics, 2008, 23, 455-463.	7.9	261
301	Optimal operation of contactless transformers with resonance in secondary circuits. , 2008, , .		24
302	Extended Theory on the Inductance Calculation ofPlanar Spiral Windings Including the Effectof Double-Layer Electromagnetic Shield. IEEE Transactions on Power Electronics, 2008, 23, 2052-2061.	7.9	31
303	A hybrid EMI filter with ultra-wide bandwidth. IEEE Applied Power Electronics Conference and Exposition, 2008, , .	0.0	8
304	Optimal Placement of Mesh Points in a Wireless Mesh Network Using Multi-path Routing Protocol. , 2008, , .		3
305	Mutual inductance calculation of movable planar coils on parallel surfaces. Power Electronics Specialist Conference (PESC), IEEE, 2008, , .	0.0	8
306	A Practical Circuit Model of High Frequency Transformers in Power Electronic Systems. Australian Journal of Electrical and Electronics Engineering, 2007, 3, 211-223.	1.2	2

#	Article	IF	CITATIONS
307	Equivalent Circuit Modeling of a Multilayer Planar Winding Array Structure for Use in a Universal Contactless Battery Charging Platform. IEEE Transactions on Power Electronics, 2007, 22, 21-29.	7.9	87
308	Extended Theory on the Inductance Calculation of Planar Spiral Windings Including the Effect of Double-layer Electromagnetic Shield. , 2007, , .		2
309	An Integrated Planar EMI Filter for Ultra-high Frequency Power Converters. , 2007, , .		3
310	A Semi-Theoretical Fluorescent Lamp Model for Time-Domain Transient and Steady-State Simulations. IEEE Transactions on Power Electronics, 2007, 22, 2106-2115.	7.9	36
311	Simulation Study and Experimental Verification of a Universal Contactless Battery Charging Platform With Localized Charging Features. IEEE Transactions on Power Electronics, 2007, 22, 2202-2210.	7.9	130
312	Comparison of Dimmable Electromagnetic and Electronic Ballast Systems—An Assessment on Energy Efficiency and Lifetime. IEEE Transactions on Industrial Electronics, 2007, 54, 3145-3154.	7.9	61
313	The Influence of the Startup Process of Small Metal-Halide (MH) Lamps on Electronic Ballast Design. IEEE Transactions on Power Electronics, 2007, 22, 1583-1591.	7.9	8
314	Measurement and Modeling of Thermal Effects on Magnetic Hysteresis of Soft Ferrites. IEEE Transactions on Magnetics, 2007, 43, 3952-3960.	2.1	38
315	Practical Evaluation of Dimming Control Methods for Electronic Ballasts. IEEE Transactions on Power Electronics, 2006, 21, 1769-1775.	7.9	38
316	Use of Auxiliary Resonant Tank to Ensure Soft-Switching in High Frequency Electronic Ballasts for Metal Halide Lamps. IEEE Transactions on Power Electronics, 2006, 21, 1437-1443.	7.9	2
317	Design and Analysis of an IC-Less Self-Oscillating Series Resonant Inverter for Dimmable Electronic Ballasts. IEEE Transactions on Power Electronics, 2005, 20, 1450-1458.	7.9	26
318	A New Generation of Universal Contactless Battery Charging Platform for Portable Consumer Electronic Equipment. IEEE Transactions on Power Electronics, 2005, 20, 620-627.	7.9	392
319	A Lamp Power Control Scheme for Dimmable Electronic Ballasts to Minimize the Temperature Effect on the Lamp Brightness. IEEE Power Electronics Letters, 2005, 3, 34-39.	0.7	0
320	Parameter Monitoring of High-Frequency Electronically Operated Discharge Lamp Systems. IEEE Transactions on Power Electronics, 2005, 20, 948-952.	7.9	4
321	An Analysis Into the Dimming Control and Characteristic of Discharge Lamps. IEEE Transactions on Power Electronics, 2005, 20, 1432-1440.	7.9	22
322	TRIAC Dimmable Ballast With Power Equalization. IEEE Transactions on Power Electronics, 2005, 20, 1441-1449.	7.9	10
323	MODELING, ANALYSIS AND DESIGN OF A THYRISTOR-BASED BI-DIRECTIONAL ac–dc CONVERTER. Journal of Circuits, Systems and Computers, 2004, 13, 687-705.	1.5	2
324	An Improved High-Intensity Discharge Lamp Model Including Acoustic Resonant Effect on the Lamp Arc Resistance. IEEE Transactions on Power Electronics, 2004, 19, 1661-1667.	7.9	15

#	Article	IF	CITATIONS
325	Use of Saturable Inductor to Improve the Dimming Characteristics of Frequency-Controlled Dimmable Electronic Ballasts. IEEE Transactions on Power Electronics, 2004, 19, 1653-1660.	7.9	14
326	A Comparative Study of Maximum-Power-Point Trackers for Photovoltaic Panels Using Switching-Frequency Modulation Scheme. IEEE Transactions on Industrial Electronics, 2004, 51, 410-418.	7.9	97
327	A Novel Electrode Power Profiler for Dimmable Ballasts Using DC Link Voltage and Switching Frequency Controls. IEEE Transactions on Power Electronics, 2004, 19, 847-853.	7.9	24
328	Dimming Control and Characteristics of High-Frequency Operated Metal Halide Lamps. IEEE Transactions on Power Electronics, 2004, 19, 854-861.	7.9	16
329	Circuit-level comparison of STATCOM technologies. IEEE Transactions on Power Electronics, 2003, 18, 1084-1092.	7.9	144
330	An electrode power control scheme for dimmable electronic ballasts. IEEE Transactions on Industrial Electronics, 2003, 50, 1335-1337.	7.9	8
331	Experimental determination of stray capacitances in high frequency transformers. IEEE Transactions on Power Electronics, 2003, 18, 1105-1112.	7.9	226
332	An evaluation of the spectral characteristics of switching converters with chaotic carrier-frequency modulation. IEEE Transactions on Industrial Electronics, 2003, 50, 171-182.	7.9	78
333	On the use of current sensors for the control of power converters. IEEE Transactions on Power Electronics, 2003, 18, 1047-1055.	7.9	17
334	Recent Developments of Planar Printed Circuit Board (PCB) Transformer Technology. HKIE Transactions, 2003, 10, 35-41.	0.1	0
335	A novel voltage sensorless control technique for a bidirectional AC/DC converter. IEEE Transactions on Power Electronics, 2003, 18, 1346-1355.	7.9	21
336	A randomized voltage vector switching scheme for three-level power inverters. IEEE Transactions on Power Electronics, 2002, 17, 94-100.	7.9	35
337	Genetic algorithm optimised high-intensity-discharge lamp model. Electronics Letters, 2002, 38, 110.	1.0	18
338	Use of Chaotic Switching for Harmonic Power Redistribution in Power Converters. World Scientific Series on Nonlinear Science, Series B, 2002, , 341-365.	0.2	0
339	A comparative study of carrier-frequency modulation techniques for conducted EMI suppression in PWM converters. IEEE Transactions on Industrial Electronics, 2002, 49, 618-627.	7.9	129
340	Single current sensor control for single-phase active power factor correction. IEEE Transactions on Power Electronics, 2002, 17, 623-632.	7.9	18
341	A novel maximum power point tracker for PV panels using switching frequency modulation. IEEE Transactions on Power Electronics, 2002, 17, 980-989.	7.9	142
342	A 31-level cascade inverter for power applications. IEEE Transactions on Industrial Electronics, 2002, 49, 613-617.	7.9	118

#	Article	IF	CITATIONS
343	Evaluation of the shielding effects on printed-circuit-board transformers using ferrite plates and copper sheets. IEEE Transactions on Power Electronics, 2002, 17, 1080-1088.	7.9	65
344	Lamp arc resistance modelling of high-intensity-discharge (HID) lamps. IET Science, Measurement and Technology, 2002, 149, 45-48.	0.7	9
345	A low-profile wide-band three-port isolation amplifier with coreless printed-circuit-board (PCB) transformers. IEEE Transactions on Industrial Electronics, 2001, 48, 1180-1187.	7.9	7
346	A comparative study on dimming control methods for electronic ballasts. IEEE Transactions on Power Electronics, 2001, 16, 828-836.	7.9	77
347	A low-profile low-power converter with coreless PCB isolation transformer. IEEE Transactions on Power Electronics, 2001, 16, 311-315.	7.9	30
348	Implementation of a decoupled optimization technique for design of switching regulators using genetic algorithms. IEEE Transactions on Power Electronics, 2001, 16, 752-763.	7.9	65
349	Stability study and control methods for small-wattage high-intensity-discharge (HID) lamps. IEEE Transactions on Industry Applications, 2001, 37, 1522-1530.	4.9	81
350	Characterization of single-stage three-phase power-factor-correction circuit using modular single-phase PWM DC-to-DC converters. IEEE Transactions on Power Electronics, 2000, 15, 62-71.	7.9	48
351	Coreless planar printed-circuit-board (PCB) transformers-a fundamental concept for signal and energy transfer. IEEE Transactions on Power Electronics, 2000, 15, 931-941.	7.9	106
352	Coreless printed circuit board (PCB) transformers with high power density and high efficiency. Electronics Letters, 2000, 36, 943.	1.0	11
353	Characterization of coreless printed circuit board (PCB) transformers. IEEE Transactions on Power Electronics, 2000, 15, 1275-1282.	7.9	51
354	Some electromagnetic aspects of coreless PCB transformers. IEEE Transactions on Power Electronics, 2000, 15, 805-810.	7.9	21
355	Actively clamped bidirectional flyback converter. IEEE Transactions on Industrial Electronics, 2000, 47, 770-779.	7.9	142
356	A bidirectional AC-DC power converter with power factor correction. IEEE Transactions on Power Electronics, 2000, 15, 942-948.	7.9	46
357	Analysis and spectral characteristics of a spread-spectrum technique for conducted EMI suppression. IEEE Transactions on Power Electronics, 2000, 15, 399-410.	7.9	157
358	On the use of current control scheme for switched-capacitor DC/DC converters. IEEE Transactions on Industrial Electronics, 2000, 47, 238-244.	7.9	31
359	A comparative investigation on the use of random modulation schemes for DC/DC converters. IEEE Transactions on Industrial Electronics, 2000, 47, 253-263.	7.9	86
360	Spectral characteristics of randomly switched PWM DC/DC converters operating in discontinuous conduction mode. IEEE Transactions on Industrial Electronics, 2000, 47, 759-769.	7.9	7

#	Article	IF	CITATIONS
361	Coreless printed circuit board (PCB) transformers for power MOSFET/IGBT gate drive circuits. IEEE Transactions on Power Electronics, 1999, 14, 422-430.	7.9	61
362	Optimal operation of coreless PCB transformer-isolated gate drive circuits with wide switching frequency range. IEEE Transactions on Power Electronics, 1999, 14, 506-514.	7.9	70
363	A zero-current-switching PWM flyback converter with a simple auxiliary switch. IEEE Transactions on Power Electronics, 1999, 14, 329-342.	7.9	69
364	Noise analysis of DC-AC random PWM schemes. IEEE Transactions on Power Electronics, 1999, 14, 761-770.	7.9	15
365	Stepwise quadratic state-space modeling technique for simulation of power electronics circuits. IEEE Transactions on Industrial Electronics, 1999, 46, 91-99.	7.9	7
366	Analysis of random PWM switching methods for three-level power inverters. IEEE Transactions on Power Electronics, 1999, 14, 1156-1163.	7.9	24
367	Quadratic state-space modeling technique for analysis and simulation of power electronic converters. IEEE Transactions on Power Electronics, 1999, 14, 1086-1100.	7.9	9
368	Coreless printed circuit board (PCB) transformers with multiple secondary windings for complementary gate drive circuits. IEEE Transactions on Power Electronics, 1999, 14, 431-437.	7.9	47
369	Reduction of power converter EMI emission using soft-switching technique. IEEE Transactions on Electromagnetic Compatibility, 1998, 40, 282-287.	2.2	120
370	Improved spectral performance of random PWM schemes with weighted switching decision. IEEE Transactions on Power Electronics, 1998, 13, 1038-1045.	7.9	16
371	A comparison of nondeterministic and deterministic switching methods for DC-DC power converters. IEEE Transactions on Power Electronics, 1998, 13, 1046-1055.	7.9	37
372	Optimal operation of single-stage three-phase power factor correction circuit using modular PWM DC-to-DC converters. Electronics Letters, 1998, 34, 2300.	1.0	4
373	An isolated ZVS/ZCS flyback converter using the leakage inductance of the coupled inductor. IEEE Transactions on Industrial Electronics, 1998, 45, 679-682.	7.9	28
374	Coreless printed-circuit board transformers for signal and energy transfer. Electronics Letters, 1998, 34, 1052.	1.0	29
375	Microprocessor-based random PWM schemes for DC-AC power conversion. IEEE Transactions on Power Electronics, 1997, 12, 253-260.	7.9	39
376	Parallellism of power converters for automatic power factor correction. Electronics Letters, 1997, 33, 1274.	1.0	14
377	Effects of continuous noise in randomised switching DC-DC converters. Electronics Letters, 1997, 33, 919.	1.0	15
378	Fast decoupled simulation of large power electronic systems using new two-port companion link models. IEEE Transactions on Power Electronics, 1997, 12, 462-473.	7.9	41

#	Article	IF	CITATIONS
379	A fully soft-switched extended-period quasi-resonant power-factor-correction circuit. IEEE Transactions on Power Electronics, 1997, 12, 922-930.	7.9	37
380	Modeling, analysis, and application of buck converters in discontinuous-input-voltage mode operation. IEEE Transactions on Power Electronics, 1997, 12, 350-360.	7.9	56
381	Novel random PWM schemes with weighted switching decision. IEEE Transactions on Power Electronics, 1997, 12, 945-952.	7.9	29
382	Duality of transmission line models for simulation of reactive circuit components. Mathematics and Computers in Simulation, 1997, 44, 143-154.	4.4	3
383	A generalized dynamic circuit model of magnetic cores for low- and high-frequency applications. I. Theoretical calculation of the equivalent core loss resistance. IEEE Transactions on Power Electronics, 1996, 11, 246-250.	7.9	49
384	Analysis of a quasi-resonant circuit for soft-switched inverters. IEEE Transactions on Power Electronics, 1996, 11, 106-114.	7.9	55
385	Reduction of EMI emission from power converter using soft-switching techniques. Electronics Letters, 1996, 32, 977.	1.0	14
386	A generalized dynamic circuit model of magnetic cores for low- and high-frequency applications. II. Circuit model formulation and implementation. IEEE Transactions on Power Electronics, 1996, 11, 251-259.	7.9	54
387	The application of transmission-line modelling to the simulation of an induction motor drive. IEEE Transactions on Energy Conversion, 1996, 11, 287-297.	5.2	18
388	Fast simulation of multistage power electronic systems with widely separated operating frequencies. IEEE Transactions on Power Electronics, 1996, 11, 405-412.	7.9	26
389	Transputer simulation of decoupled electrical circuits. Mathematics and Computers in Simulation, 1996, 42, 1-13.	4.4	3
390	Application of the transmission line method to the solution of the continuous Kalman filter equations of general order. Mathematics and Computers in Simulation, 1996, 42, 15-33.	4.4	0
391	Random discrete PWM method for DC-DC power converters. Electronics Letters, 1996, 32, 2105.	1.0	8
392	Development of an induction motor drive phase model based on the TLM method. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 1995, 8, 29-49.	1.9	1
393	Solution of the differential Riccati equation using the transmission line modelling (TLM) technique. Communications in Numerical Methods in Engineering, 1995, 11, 25-32.	1.3	1
394	DISCRETE-TIME SIMULATION OF AN INVERTER-FED SYNCHRONOUS MOTOR DRIVE. Electric Power Components and Systems, 1995, 23, 81-91.	0.1	0
395	A dynamic equivalent circuit model for solid magnetic cores for high switching frequency operations. IEEE Transactions on Power Electronics, 1995, 10, 791-795.	7.9	23
396	Modeling non-linear power electronic circuits with the transmission-line modeling technique. IEEE Transactions on Power Electronics, 1995, 10, 48-54.	7.9	21

#	Article	IF	CITATIONS
397	Optimised synchronised discrete delta modulation scheme for UPS applications. Electronics Letters, 1995, 31, 934-935.	1.0	5
398	Decoupled simulation of DC-linked power electronic systems using transmission-line links. IEEE Transactions on Power Electronics, 1994, 9, 85-91.	7.9	35
399	TLM stub-link conversion technique. Electronics Letters, 1993, 29, 998-999.	1.0	1
400	Solution of the continuous Kalman filter equations using the transmission line method. International Journal of Electronics, 1992, 73, 271-286.	1.4	3
401	Computer simulation of a converter-fed DC drive using the transmission-line modeling technique. IEEE Transactions on Power Electronics, 1991, 6, 636-644.	7.9	24
402	The modelling of networks with frequently changing topology whilst maintaining a constant system matrix. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 1990, 3, 11-21.	1.9	9
403	A versatile semi-empirical PSpice fluorescent lamp model. , 0, , .		1
404	Boundary Control of Dynamic Voltage Restorers in Voltage Harmonic Compensation. , 0, , .		3
405	An Analysis and Practical Implementation of a Dimmable Compact Fluorescent Lamp Ballast Circuit Without Integrated Circuit Control. , 0, , .		10
406	Steady-State Photo-Electro-Thermal (PET) Theory for LED Systems. , 0, , 9-26.		0
407	Chromatic, Photometric and Thermal Modelling of LED Systems. , 0, , 83-102.		0