
Maria Ll Calleja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5263696/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diel dynamics of dissolved organic matter and heterotrophic prokaryotes reveal enhanced growth at the ocean's mesopelagic fish layer during daytime. Science of the Total Environment, 2022, 804, 150098.	8.0	9
2	High summer temperatures amplify functional differences between coral―and algaeâ€dominated reef communities. Ecology, 2021, 102, e03226.	3.2	15
3	Heterotrophic bacterioplankton responses in coral- and algae-dominated Red Sea reefs show they might benefit from future regime shift. Science of the Total Environment, 2021, 751, 141628.	8.0	14
4	High Summer Temperatures Amplify Functional Differences Between Coral―and Algaeâ€Dominated Reef Communities. Bulletin of the Ecological Society of America, 2021, 102, e01822.	0.2	0
5	Fine-scale metabolic discontinuity in a stratified prokaryote microbiome of a Red Sea deep halocline. ISME Journal, 2021, 15, 2351-2365.	9.8	11
6	Nutrient pollution enhances productivity and framework dissolution in algae- but not in coral-dominated reef communities. Marine Pollution Bulletin, 2021, 168, 112444.	5.0	7
7	Localized effects of offshore aquaculture on water quality in a tropical sea. Marine Pollution Bulletin, 2021, 171, 112732.	5.0	5
8	Heterotrophic Bacterioplankton Growth and Physiological Properties in Red Sea Tropical Shallow Ecosystems With Different Dissolved Organic Matter Sources. Frontiers in Microbiology, 2021, 12, 784325.	3.5	2
9	Variability in Water-Column Respiration and Its Dependence on Organic Carbon Sources in the Canary Current Upwelling Region. Frontiers in Earth Science, 2020, 8, .	1.8	8
10	Weekly variations of viruses and heterotrophic nanoflagellates and their potential impact on bacterioplankton in shallow waters of the central Red Sea. FEMS Microbiology Ecology, 2020, 96, .	2.7	19
11	Seasonal variability and vertical distribution of autotrophic and heterotrophic picoplankton in the Central Red Sea. PeerJ, 2020, 8, e8612.	2.0	18
12	Factors Regulating the Relationship Between Total and Size-Fractionated Chlorophyll-a in Coastal Waters of the Red Sea. Frontiers in Microbiology, 2019, 10, 1964.	3.5	23
13	Dissolved organic carbon contribution to oxygen respiration in the central Red Sea. Scientific Reports, 2019, 9, 4690.	3.3	38
14	The Great Barrier Reef: A source of CO2 to the atmosphere. Marine Chemistry, 2019, 210, 24-33.	2.3	24
15	Characterization of light absorption by chromophoric dissolved organic matter (CDOM) in the upper layer of the Red Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2018, 133, 72-84.	1.4	9
16	The Mesopelagic Scattering Layer: A Hotspot for Heterotrophic Prokaryotes in the Red Sea Twilight Zone. Frontiers in Marine Science, 2018, 5, .	2.5	43
17	Diel dynamics and coupling of heterotrophic prokaryotes and dissolved organic matter in epipelagic and mesopelagic waters of the central Red Sea. Environmental Microbiology, 2018, 20, 2990-3000.	3.8	22
18	Low Abundances but High Growth Rates of Coastal Heterotrophic Bacteria in the Red Sea. Frontiers in Microbiology, 2018, 9, 3244.	3.5	39

MARIA LL CALLEJA

#	Article	IF	CITATIONS
19	Effects of increase glacier discharge on phytoplankton bloom dynamics and pelagic geochemistry in a high Arctic fjord. Progress in Oceanography, 2017, 159, 195-210.	3.2	46
20	Aeolian transport of seagrass (Posidonia oceanica) beach-cast to terrestrial systems. Estuarine, Coastal and Shelf Science, 2017, 196, 31-44.	2.1	29
21	Glacier inputs influence organic matter composition and prokaryotic distribution in a high Arctic fjord (Kongsfjorden, Svalbard). Journal of Marine Systems, 2016, 164, 112-127.	2.1	46
22	Major hydrogeochemical processes in an Acid Mine Drainage affected estuary. Marine Pollution Bulletin, 2015, 91, 295-305.	5.0	24
23	Ocean–atmosphere exchange of organic carbon and CO ₂ surrounding the Antarctic Peninsula. Biogeosciences, 2014, 11, 2755-2770.	3.3	20
24	Changes in compound specific δ15N amino acid signatures and d/l ratios in marine dissolved organic matter induced by heterotrophic bacterial reworking. Marine Chemistry, 2013, 149, 32-44.	2.3	64
25	Prevalence of strong vertical CO ₂ and O ₂ variability in the top meters of the ocean. Clobal Biogeochemical Cycles, 2013, 27, 941-949.	4.9	15
26	Evidence for surface organic matter modulation of air-sea CO ₂ gas exchange. Biogeosciences, 2009, 6, 1105-1114.	3.3	34
27	Mesopelagic prokaryotic bulk and single-cell heterotrophic activity and community composition in the NW Africa–Canary Islands coastal-transition zone. Progress in Oceanography, 2009, 83, 189-196.	3.2	53
28	Bacterial Community Dynamics in a Seagrass (Posidonia oceanica) Meadow Sediment. Estuaries and Coasts, 2009, 32, 276-286.	2.2	43
29	Sedimentary iron inputs stimulate seagrass (Posidonia oceanica) population growth in carbonate sediments. Estuarine, Coastal and Shelf Science, 2008, 76, 710-713.	2.1	16
30	The relationship between seagrass (Posidonia oceanica) decline and sulfide porewater concentration in carbonate sediments. Estuarine, Coastal and Shelf Science, 2007, 73, 583-588.	2.1	93
31	Iron Additions Reduce Sulfide Intrusion and Reverse Seagrass (Posidonia oceanica) Decline in Carbonate Sediments. Ecosystems, 2007, 10, 745-756.	3.4	40
32	Light regulation of benthic sulfate reduction rates mediated by seagrass (Thalassia testudinum) metabolism. Estuaries and Coasts, 2006, 29, 1255-1264.	2.2	18
33	Submerged versus air-exposed intertidal macrophyte productivity: from physiological to community-level assessments. Journal of Experimental Marine Biology and Ecology, 2005, 317, 87-95.	1.5	60
34	Whole-system metabolism and CO ₂ fluxes in a Mediterranean Bay dominated by seagrass beds (Palma Bay, NW Mediterranean). Biogeosciences, 2005, 2, 43-60.	3.3	91
35	Control of air-sea CO2disequilibria in the subtropical NE Atlantic by planktonic metabolism under the ocean skin. Geophysical Research Letters, 2005, 32, .	4.0	50
36	High atmosphere-ocean exchange of organic carbon in the NE subtropical Atlantic. Geophysical Research Letters, 2005, 32, .	4.0	60

#	Article	IF	CITATIONS
37	Title is missing!. Journal of Chemical Crystallography, 2003, 33, 609-612.	1.1	7
38	Anisotropic thermal expansion in 18-crown-6·2 H2O·2 HNO3. New Journal of Chemistry, 2003, 27, 28-31.	2.8	27
39	Oxonium Ions from Aqua Regia:Â Isolation by Hydrogen Bonding to Crown Ethers. Inorganic Chemistry, 2001, 40, 4978-4985.	4.0	69
40	Red Sea Fishes That Travel Into the Deep Ocean Daily. Frontiers for Young Minds, 0, 8, .	0.8	0