
Hongwei W Qian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5263447/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin. Journal of Cell Biology, 2012, 197, 997-1008.	5.2	167
2	The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. Journal of Cell Biology, 2013, 203, 345-357.	5.2	166
3	Elevated expression of activins promotes muscle wasting and cachexia. FASEB Journal, 2014, 28, 1711-1723.	0.5	163
4	<i>Smad7</i> gene delivery prevents muscle wasting associated with cancer cachexia in mice. Science Translational Medicine, 2016, 8, 348ra98.	12.4	70
5	Differential Effects of IL6 and Activin A in the Development of Cancer-Associated Cachexia. Cancer Research, 2016, 76, 5372-5382.	0.9	62
6	Perturbed BMP signaling and denervation promote muscle wasting in cancer cachexia. Science Translational Medicine, 2021, 13, .	12.4	58
7	Phosphoinositide 3-kinase (p110α) gene delivery limits diabetes-induced cardiac NADPH oxidase and cardiomyopathy in a mouse model with established diastolic dysfunction. Clinical Science, 2017, 131, 1345-1360.	4.3	49
8	Fine-tuning the cardiac O-GlcNAcylation regulatory enzymes governs the functional and structural phenotype of the diabetic heart. Cardiovascular Research, 2022, 118, 212-225.	3.8	47
9	Gene therapy targeting cardiac phosphoinositide 3-kinase (p110α) attenuates cardiac remodeling in type 2 diabetes. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H840-H852.	3.2	32
10	Integrated Glycoproteomics Identifies a Role of N-Glycosylation and Galectin-1 on Myogenesis and Muscle Development. Molecular and Cellular Proteomics, 2021, 20, 100030.	3.8	31
11	Intravascular Follistatin gene delivery improves glycemic control in a mouse model of type 2 diabetes. FASEB Journal, 2020, 34, 5697-5714.	0.5	10
12	Bone Morphogenetic Protein 7 Gene Delivery Improves Cardiac Structure and Function in a Murine Model of Diabetic Cardiomyopathy. Frontiers in Pharmacology, 2021, 12, 719290.	3.5	8
13	TMEPAI/PMEPA1 Is a Positive Regulator of Skeletal Muscle Mass. Frontiers in Physiology, 2020, 11, 560225.	2.8	5
14	Mechanisms of chemotherapyâ€induced muscle wasting in mice with cancer cachexia. JCSM Rapid Communications, 2022, 5, 102-116.	1.6	3