Maria Luisa Mangoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5263399/publications.pdf

Version: 2024-02-01

50273 82542 6,046 130 46 72 citations h-index g-index papers 132 132 132 5572 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Temporins, Antimicrobial Peptides from the European Red Frog Rana temporaria. FEBS Journal, 1996, 242, 788-792.	0.2	302
2	Antimicrobial peptides and wound healing: biological and therapeutic considerations. Experimental Dermatology, 2016, 25, 167-173.	2.9	282
3	Temporin L: antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles. Biochemical Journal, 2002, 368, 91-100.	3.7	172
4	Temporins, Small Antimicrobial Peptides with Leishmanicidal Activity. Journal of Biological Chemistry, 2005, 280, 984-990.	3.4	169
5	Effects of the antimicrobial peptide temporin L on cell morphology, membrane permeability and viability of Escherichia coli. Biochemical Journal, 2004, 380, 859-865.	3.7	149
6	Structure-function relationships of temporins, small antimicrobial peptides from amphibian skin. FEBS Journal, 2000, 267, 1447-1454.	0.2	148
7	Temporins, anti-infective peptides with expanding properties. Cellular and Molecular Life Sciences, 2006, 63, 1060-1069.	5. 4	146
8	Gold-nanoparticles coated with the antimicrobial peptide esculentin-1a(1-21)NH2 as a reliable strategy for antipseudomonal drugs. Acta Biomaterialia, 2017, 47, 170-181.	8.3	135
9	Short native antimicrobial peptides and engineered ultrashort lipopeptides: similarities and differences in cell specificities and modes of action. Cellular and Molecular Life Sciences, 2011, 68, 2267-2280.	5.4	133
10	Esculentin(1-21), an amphibian skin membrane-active peptide with potent activity on both planktonic and biofilm cells of the bacterial pathogen Pseudomonas aeruginosa. Cellular and Molecular Life Sciences, 2013, 70, 2773-2786.	5 . 4	131
11	How Many Antimicrobial Peptide Molecules Kill a Bacterium? The Case of PMAP-23. ACS Chemical Biology, 2014, 9, 2003-2007.	3.4	130
12	Overcoming barriers in Pseudomonas aeruginosa lung infections: Engineered nanoparticles for local delivery of a cationic antimicrobial peptide. Colloids and Surfaces B: Biointerfaces, 2015, 135, 717-725.	5.0	120
13	Mechanisms of biofilm inhibition and degradation by antimicrobial peptides. Biochemical Journal, 2015, 468, 259-270.	3.7	116
14	A Synergism between Temporins toward Gram-negative Bacteria Overcomes Resistance Imposed by the Lipopolysaccharide Protective Layer. Journal of Biological Chemistry, 2006, 281, 28565-28574.	3.4	112
15	Temporins and their synergism against Gram-negative bacteria and in lipopolysaccharide detoxification. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1610-1619.	2.6	103
16	Effect of Naturall- tod-Amino Acid Conversion on the Organization, Membrane Binding, and Biological Function of the Antimicrobial Peptides Bombinins Hâ€. Biochemistry, 2006, 45, 4266-4276.	2.5	92
17	Lipopolysaccharide, a Key Molecule Involved in the Synergism between Temporins in Inhibiting Bacterial Growth and in Endotoxin Neutralization. Journal of Biological Chemistry, 2008, 283, 22907-22917.	3.4	91
18	NMR Structures and Interactions of Temporin-1Tl and Temporin-1Tb with Lipopolysaccharide Micelles. Journal of Biological Chemistry, 2011, 286, 24394-24406.	3.4	84

#	Article	IF	CITATIONS
19	The synthesis of antimicrobial peptides in the skin ofRana esculentais stimulated by microorganisms. FASEB Journal, 2001, 15, 1431-1432.	0.5	83
20	Poly(lactide- <i>co</i> -glycolide) Nanoparticles for Prolonged Therapeutic Efficacy of Esculentin-1a-Derived Antimicrobial Peptides against <i>Pseudomonas aeruginosa</i> Lung Infection: in Vitro and in Vivo Studies. Biomacromolecules, 2019, 20, 1876-1888.	5.4	82
21	A Different Molecular Mechanism Underlying Antimicrobial and Hemolytic Actions of Temporins A and L. Journal of Medicinal Chemistry, 2008, 51, 2354-2362.	6.4	80
22	The Amphibian Antimicrobial Peptide Temporin B Inhibits <i>In Vitro</i> Herpes Simplex Virus 1 Infection. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	79
23	Comparative Analysis of the Bactericidal Activities of Amphibian Peptide Analogues against Multidrug-Resistant Nosocomial Bacterial Strains. Antimicrobial Agents and Chemotherapy, 2008, 52, 85-91.	3.2	76
24	Structureâ^'Activity Relationship, Conformational and Biological Studies of Temporin L Analogues. Journal of Medicinal Chemistry, 2011, 54, 1298-1307.	6.4	76
25	The Frog Skin-Derived Antimicrobial Peptide Esculentin-1a(1-21)NH2 Promotes the Migration of Human HaCaT Keratinocytes in an EGF Receptor-Dependent Manner: A Novel Promoter of Human Skin Wound Healing?. PLoS ONE, 2015, 10, e0128663.	2.5	76
26	Ranacyclins, a New Family of Short Cyclic Antimicrobial Peptides:  Biological Function, Mode of Action, and Parameters Involved in Target Specificity,,. Biochemistry, 2003, 42, 14023-14035.	2.5	73
27	Anti- <i>Pseudomonas</i> Activity of Frog Skin Antimicrobial Peptides in a <i>Caenorhabditis elegans</i> Infection Model: a Plausible Mode of Action <i>In Vitro</i> and <i>In Vivo</i> Antimicrobial Agents and Chemotherapy, 2010, 54, 3853-3860.	3.2	71
28	Structure-function relationships in bombinins H, antimicrobial peptides from Bombina skin secretionsâ [*] †. Peptides, 2000, 21, 1673-1679.	2.4	70
29	d-Amino acids incorporation in the frog skin-derived peptide esculentin-1a(1-21)NH2 is beneficial for its multiple functions. Amino Acids, 2015, 47, 2505-2519.	2.7	70
30	Anti-Candida effect of bacillomycin D-like lipopeptides from Bacillus subtilis B38. FEMS Microbiology Letters, 2011, 316, 108-114.	1.8	69
31	Temporins A and B Stimulate Migration of HaCaT Keratinocytes and Kill Intracellular Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2014, 58, 2520-2527.	3.2	68
32	Interaction of Antimicrobial Peptide Temporin L with Lipopolysaccharide In Vitro and in Experimental Rat Models of Septic Shock Caused by Gram-Negative Bacteria. Antimicrobial Agents and Chemotherapy, 2006, 50, 2478-2486.	3 . 2	65
33	Effect of glucocorticoids on the synthesis of antimicrobial peptides in amphibian skin. FEBS Letters, 1997, 416, 273-275.	2.8	61
34	Experimental Infections of Rana esculenta with Aeromonas hydrophila: A Molecular Mechanism for the Control of the Normal Flora. Scandinavian Journal of Immunology, 1998, 48, 357-363.	2.7	61
35	Isomerization of an Antimicrobial Peptide Broadens Antimicrobial Spectrum to Gram-Positive Bacterial Pathogens. PLoS ONE, 2012, 7, e46259.	2.5	60
36	Naturally Occurring Peptides from Rana temporaria: Antimicrobial Properties and More. Current Topics in Medicinal Chemistry, 2015, 16, 54-64.	2.1	60

#	Article	IF	CITATIONS
37	Binding of an antimicrobial peptide to bacterial cells: Interaction with different species, strains and cellular components. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183291.	2.6	58
38	From frog integument to human skin: dermatological perspectives from frog skin biology. Biological Reviews, 2014, 89, 618-655.	10.4	55
39	Cell-Density Dependence of Host-Defense Peptide Activity and Selectivity in the Presence of Host Cells. ACS Chemical Biology, 2017, 12, 52-56.	3.4	55
40	Expression and activity of cyclic and linear analogues of esculentin-1, an anti-microbial peptide from amphibian skin. FEBS Journal, 1999, 263, 921-927.	0.2	54
41	Esculentin 1–21: a linear antimicrobial peptide from frog skin with inhibitory effect on bovine mastitisâ€causing bacteria. Journal of Peptide Science, 2009, 15, 607-614.	1.4	53
42	Host-defense peptides: from biology to therapeutic strategies. Cellular and Molecular Life Sciences, 2011, 68, 2157-2159.	5.4	53
43	Esculentin-1a(1-21)NH2: a frog skin-derived peptide for microbial keratitis. Cellular and Molecular Life Sciences, 2015, 72, 617-627.	5.4	53
44	The effect of d-amino acid substitution on the selectivity of temporin L towards target cells: Identification of a potent anti-Candida peptide. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 652-660.	2.6	51
45	Inoculum effect of antimicrobial peptides. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	50
46	Biological characterization and modes of action of temporins and bombinins H, multiple forms of short and mildly cationic anti-microbial peptides from amphibian skin. Journal of Peptide Science, 2007, 13, 603-613.	1.4	49
47	Esculentinâ€1b(1–18) – a membraneâ€active antimicrobial peptide that synergizes with antibiotics and modifies the expression level of a limited number of proteins in <i>Escherichiaâ€∫coli</i> . FEBS Journal, 2009, 276, 5647-5664.	4.7	49
48	Esculentin-1a-Derived Peptides Promote Clearance of Pseudomonas aeruginosa Internalized in Bronchial Cells of Cystic Fibrosis Patients and Lung Cell Migration: Biochemical Properties and a Plausible Mode of Action. Antimicrobial Agents and Chemotherapy, 2016, 60, 7252-7262.	3.2	47
49	Broad-Spectrum Antiviral Activity of the Amphibian Antimicrobial Peptide Temporin L and Its Analogs. International Journal of Molecular Sciences, 2022, 23, 2060.	4.1	47
50	Functional characterisation of the 1–18 fragment of esculentin-1b, an antimicrobial peptide from Rana esculenta. Peptides, 2003, 24, 1771-1777.	2.4	45
51	Inhibition of <i>Pseudomonas aeruginosa</i> biofilm formation and expression of virulence genes by selective epimerization in the peptide Esculentinâ€1a(1â€21) <scp>NH</scp> ₂ . FEBS Journal, 2019, 286, 3874-3891.	4.7	45
52	Synergistic fungicidal activity of the lipopeptide bacillomycin D with amphotericin B against pathogenic <i>Candida</i> Species. FEMS Yeast Research, 2015, 15, fov022.	2.3	41
53	Naturally-Occurring Alkaloids of Plant Origin as Potential Antimicrobials against Antibiotic-Resistant Infections. Molecules, 2020, 25, 3619.	3.8	41
54	An amphibian antimicrobial peptide variant expressed in Nicotiana tabacum confers resistance to phytopathogens 1. Biochemical Journal, 2003, 370, 121-127.	3.7	40

#	Article	IF	CITATIONS
55	Alteration of Local Microflora and α-defensins Hyper-production in Colonic Adenoma Mucosa. Journal of Clinical Gastroenterology, 2011, 45, 602-610.	2.2	39
56	From liposomes to cells: Filling the gap between physicochemical and microbiological studies of the activity and selectivity of hostâ€defense peptides. Peptide Science, 2018, 110, e24041.	1.8	37
57	Nigritanine as a New Potential Antimicrobial Alkaloid for the Treatment of Staphylococcus aureus-Induced Infections. Toxins, 2019, 11, 511.	3.4	37
58	Alanine scanning analysis and structure–function relationships of the frogâ€skin antimicrobial peptide temporinâ€1Ta. Journal of Peptide Science, 2011, 17, 358-365.	1.4	35
59	The Revaluation of Plant-Derived Terpenes to Fight Antibiotic-Resistant Infections. Antibiotics, 2020, 9, 325.	3.7	35
60	Novel α-MSH Peptide Analogues with Broad Spectrum Antimicrobial Activity. PLoS ONE, 2013, 8, e61614.	2.5	35
61	Optimization of medium composition for the production of antimicrobial activity by <i>Bacillus subtilis</i> B38. Biotechnology Progress, 2009, 25, 1267-1274.	2.6	34
62	Production of Anti-Methicillin-Resistant Staphylococcus Activity from Bacillus subtilis sp. Strain B38 Newly Isolated from Soil. Applied Biochemistry and Biotechnology, 2009, 157, 407-419.	2.9	34
63	Glycine-replaced derivatives of [Pro 3 ,DLeu 9]TL, a temporin L analogue: Evaluation of antimicrobial, cytotoxic and hemolytic activities. European Journal of Medicinal Chemistry, 2017, 139, 750-761.	5.5	34
64	Promising Approaches to Optimize the Biological Properties of the Antimicrobial Peptide Esculentin- $1a(1a \in "21)$ NH2: Amino Acids Substitution and Conjugation to Nanoparticles. Frontiers in Chemistry, 2017, 5, 26.	3.6	34
65	A Novel In Vitro Wound Healing Assay to Evaluate Cell Migration. Journal of Visualized Experiments, 2018, , .	0.3	34
66	Rational modification of a dendrimeric peptide with antimicrobial activity: consequences on membrane-binding and biological properties. Amino Acids, 2016, 48, 887-900.	2.7	33
67	In vitro bactericidal activity of the N-terminal fragment of the frog peptide esculentin-1b (Esc 1–18) in combination with conventional antibiotics against Stenotrophomonas maltophilia. Peptides, 2009, 30, 1622-1626.	2.4	32
68	Membrane interaction and antibacterial properties of two mildly cationic peptide diastereomers, bombinins H2 and H4, isolated from Bombina skin. European Biophysics Journal, 2011, 40, 577-588.	2.2	32
69	Fighting microbial infections: A lesson from amphibian skin-derived esculentin-1 peptides. Peptides, 2015, 71, 286-295.	2.4	32
70	In vivo therapeutic efficacy of frog skin-derived peptides against Pseudomonas aeruginosa-induced pulmonary infection. Scientific Reports, 2017, 7, 8548.	3.3	31
71	NMR Structure of Temporin-1 Ta in Lipopolysaccharide Micelles: Mechanistic Insight into Inactivation by Outer Membrane. PLoS ONE, 2013, 8, e72718.	2.5	31
72	Esculentin-1a Derived Antipseudomonal Peptides: Limited Induction of Resistance and Synergy with Aztreonam. Protein and Peptide Letters, 2019, 25, 1155-1162.	0.9	31

#	Article	IF	CITATIONS
73	Bacillomycin D and its combination with amphotericin B: promising antifungal compounds with powerful antibiofilm activity and wound-healing potency. Journal of Applied Microbiology, 2016, 120, 289-300.	3.1	28
74	Membrane perturbing activities and structural properties of the frog-skin derived peptide Esculentin- $1a(1-21)$ NH2 and its Diastereomer Esc $(1-21)$ -1c: Correlation with their antipseudomonal and cytotoxic activity. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2327-2339.	2.6	27
75	Antioxidative and DNA Protective Effects of Bacillomycin D-Like Lipopeptides Produced by B38 Strain. Applied Biochemistry and Biotechnology, 2012, 168, 2245-2256.	2.9	26
76	Aggregation determines the selectivity of membrane-active anticancer and antimicrobial peptides: The case of killerFLIP. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183107.	2.6	26
77	Assessment of the potential of temporin peptides from the frog <scp><i>Rana temporaria</i></scp> (Ranidae) as antiâ€diabetic agents. Journal of Peptide Science, 2018, 24, e3065.	1.4	24
78	Esculentinâ€la derived peptides kill <i>Pseudomonas aeruginosa</i> biofilm on soft contact lenses and retain antibacterial activity upon immobilization to the lens surface. Peptide Science, 2018, 110, e23074.	1.8	24
79	First-in-Class Cyclic Temporin L Analogue: Design, Synthesis, and Antimicrobial Assessment. Journal of Medicinal Chemistry, 2021, 64, 11675-11694.	6.4	24
80	Folding propensity and biological activity of peptides: The effect of a single stereochemical isomerization on the conformational properties of bombinins in aqueous solution. Biopolymers, 2008, 89, 769-778.	2.4	23
81	The Outcomes of Decorated Prolines in the Discovery of Antimicrobial Peptides from Temporin‣. ChemMedChem, 2019, 14, 1283-1290.	3.2	23
82	Anti-Candida activity of $1\hat{a}\in 18$ fragment of the frog skin peptide esculentin-1b: in vitro and in vivo studies in a Caenorhabditis elegans infection model. Cellular and Molecular Life Sciences, 2013, 71, 2535-46.	5.4	22
83	Temporin G, an amphibian antimicrobial peptide against influenza and parainfluenza respiratory viruses: Insights into biological activity and mechanism of action. FASEB Journal, 2021, 35, e21358.	0.5	21
84	Effects of Aib residues insertion on the structural–functional properties of the frog skin-derived peptide esculentin-1a(1–21)NH2. Amino Acids, 2017, 49, 139-150.	2.7	20
85	Novel temporin L antimicrobial peptides: promoting self-assembling by lipidic tags to tackle superbugs. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1751-1764.	5. 2	20
86	?-Defensin increase in peripheral blood mononuclear cells from patients with hepatitis C virus chronic infection. Journal of Viral Hepatitis, 2006, 13, 821-827.	2.0	19
87	The Potential of Frog Skin Peptides for Anti-Infective Therapies: The Case of Esculentin-1a(1-21)NH2. Current Medicinal Chemistry, 2020, 27, 1405-1419.	2.4	19
88	The Antimicrobial Peptide Temporin G: Anti-Biofilm, Anti-Persister Activities, and Potentiator Effect of Tobramycin Efficacy Against Staphylococcus aureus. International Journal of Molecular Sciences, 2020, 21, 9410.	4.1	17
89	NMR structure and binding of esculentin-1a (1–21)NH 2 and its diastereomer to lipopolysaccharide: Correlation with biological functions. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 800-812.	2.6	16
90	<i>ent</i> -Beyerane Diterpenes as a Key Platform for the Development of ArnT-Mediated Colistin Resistance Inhibitors. Journal of Organic Chemistry, 2020, 85, 10891-10901.	3.2	16

#	Article	IF	CITATIONS
91	A new antibacterial and antioxidant S07-2 compound produced by⟨i⟩Bacillus subtilis⟨/i⟩â€∫B38. FEMS Microbiology Letters, 2010, 303, 176-182.	1.8	15
92	Fluorescence and Electron Microscopy Methods for Exploring Antimicrobial Peptides Mode(s) of Action. Methods in Molecular Biology, 2010, 618, 249-266.	0.9	15
93	Development of Antimicrobial Peptides from Amphibians. Antibiotics, 2020, 9, 772.	3.7	15
94	A novel colistin adjuvant identified by virtual screening for ArnT inhibitors. Journal of Antimicrobial Chemotherapy, 2020, 75, 2564-2572.	3.0	15
95	Conformational Analysis of the Host-Defense Peptides Pseudhymenochirin-1Pb and -2Pa and Design of Analogues with Insulin-Releasing Activities and Reduced Toxicities. Journal of Natural Products, 2015, 78, 3041-3048.	3.0	14
96	Structural Elucidation and Antimicrobial Characterization of Novel Diterpenoids from <i>Fabiana densa</i> var. <i>ramulosa</i> ACS Medicinal Chemistry Letters, 2020, 11, 760-765.	2.8	14
97	Cytotoxic peptides with insulinâ€releasing activities from skin secretions of the Italian stream frog <scp><i>Rana italica</i></scp> (Ranidae). Journal of Peptide Science, 2017, 23, 769-776.	1.4	13
98	Purification, Conformational Analysis, and Properties of a Family of Tigerinin Peptides from Skin Secretions of the Crowned Bullfrog <i>Hoplobatrachus occipitalis</i> Journal of Natural Products, 2016, 79, 2350-2356.	3.0	12
99	A peptidylprolyl cis/trans isomerase from Xenopus laevis skin: cloning, biochemical characterization and putative role in the secretion. Peptides, 2003, 24, 1713-1721.	2.4	11
100	Bioactive compounds: a goldmine for defining new strategies against pathogenic bacterial biofilms?. Critical Reviews in Microbiology, 2023, 49, 117-149.	6.1	10
101	Toward an improved structural model of the frogâ€skin antimicrobial peptide esculentinâ€1b(1â€18). Biopolymers, 2012, 97, 873-881.	2.4	9
102	Bronchial epithelium repair by Esculentin-1a-derived antimicrobial peptides: involvement of metalloproteinase-9 and interleukin-8, and evaluation of peptides' immunogenicity. Scientific Reports, 2019, 9, 18988.	3.3	9
103	Frog Skin-Derived Peptides Against Corynebacterium jeikeium: Correlation between Antibacterial and Cytotoxic Activities. Antibiotics, 2020, 9, 448.	3.7	9
104	The Antimicrobial Peptide Esc(1-21) Synergizes with Colistin in Inhibiting the Growth and in Killing Multidrug Resistant Acinetobacter baumannii Strains. Antibiotics, 2022, 11, 234.	3.7	9
105	Insulinotropic, glucose-lowering, and beta-cell anti-apoptotic actions of peptides related to esculentin-1a(1-21).NH2. Amino Acids, 2018, 50, 723-734.	2.7	8
106	Opposing Effects of PhoPQ and PmrAB on the Properties of <i>Salmonella enterica</i> serovar Typhimurium: Implications on Resistance to Antimicrobial Peptides. Biochemistry, 2021, 60, 2943-2955.	2.5	8
107	The Inhibition of DNA Viruses by the Amphibian Antimicrobial Peptide Temporin G: A Virological Study Addressing HSV-1 and JPCyV. International Journal of Molecular Sciences, 2022, 23, 7194.	4.1	8
108	Peptidomic analysis of the host-defense peptides in skin secretions of the Trinidadian leaf frog Phyllomedusa trinitatis (Phyllomedusidae). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2018, 28, 72-79.	1.0	7

#	Article	IF	CITATIONS
109	A Lesson from Bombinins H, Mildly Cationic Diastereomeric Antimicrobial Peptides from Bombina Skin. Current Protein and Peptide Science, 2013, 14, 734-743.	1.4	7
110	Inorganic Gold and Polymeric Poly(Lactide-co-glycolide) Nanoparticles as Novel Strategies to Ameliorate the Biological Properties of Antimicrobial Peptides. Current Protein and Peptide Science, 2020, 21, 429-438.	1.4	7
111	Pâ€113 Peptide: New experimental evidences on its biological activity and conformational insights from molecular dynamics simulations. Biopolymers, 2014, 102, 159-167.	2.4	6
112	Peptidomic analysis of skin secretions of the Mexican burrowing toad Rhinophrynus dorsalis (Rhinophrynidae): Insight into the origin of host-defense peptides within the Pipidae and characterization of a proline-arginine-rich peptide. Peptides, 2017, 97, 22-28.	2.4	5
113	Antifungal Activity of the Frog Skin Peptide Temporin G and Its Effect on Candida albicans Virulence Factors. International Journal of Molecular Sciences, 2022, 23, 6345.	4.1	5
114	Triggering of the Antibacterial Activity of Bacillus subtilis B38 Strain against Methicillin-Resistant Staphylococcus aureus. Applied Biochemistry and Biotechnology, 2011, 164, 34-44.	2.9	4
115	Editorial (Thematic Issue: Antimicrobial Peptides in Medicinal Chemistry: Advances and Applications). Current Topics in Medicinal Chemistry, 2015, 16, 2-3.	2.1	4
116	Antimicrobial Peptides and their Multiple Effects at Sub-Inhibitory Concentrations. Current Topics in Medicinal Chemistry, 2020, 20, 1264-1273.	2.1	4
117	Esc peptides as novel potentiators of defective cystic fibrosis transmembrane conductance regulator: an unprecedented property of antimicrobial peptides. Cellular and Molecular Life Sciences, 2022, 79, 1.	5.4	4
118	Preface to Amphibian Antimicrobial Peptides. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1535-1536.	2.6	3
119	Methods for In Vitro Analysis of Antimicrobial Activity and Toxicity of Anti-keratitis Peptides: Bacterial Viability in Tears, MTT, and TNF-α Release Assays. Methods in Molecular Biology, 2017, 1548, 395-409.	0.9	2
120	Exposure to b-LED Light While Exerting Antimicrobial Activity on Gram-Negative and -Positive Bacteria Promotes Transient EMT-like Changes and Growth Arrest in Keratinocytes. International Journal of Molecular Sciences, 2022, 23, 1896.	4.1	2
121	Derivatives of Esculentin-1 Peptides as Promising Candidates for Fighting Infections from Escherichia coli O157:H7. Antibiotics, 2022, 11, 656.	3.7	2
122	Bombinins., 2006, , 333-337.		1
123	Editorial: Secondary Metabolites and Peptides as Unique Natural Reservoirs of New Therapeutic Leads for Treatment of Cancer and Microbial Infections. Frontiers in Chemistry, 2021, 9, 748180.	3.6	1
124	A Plausible Molecular Mechanism for the Synergistic Activity of Temporins at the Level of Lipopolysaccharide-Outer Membrane of Gram-Negative Bacteria. Biophysical Journal, 2012, 102, 91a-92a.	0.5	0
125	Bombinins., 2013,, 331-337.		0
126	Selectivity of Antimicrobial Peptides: Association to Bacterial and Eukaryotic Cells and Cell-Density Dependence. Biophysical Journal, 2016, 110, 417a.	0.5	0

#	ARTICLE	IF	CITATIONS
127	Methods for In Vivo/Ex Vivo Analysis of Antimicrobial Peptides in Bacterial Keratitis: siRNA Knockdown, Colony Counts, Myeloperoxidase, Immunostaining, and RT-PCR Assays. Methods in Molecular Biology, 2017, 1548, 411-425.	0.9	O
128	Nanotechnologies to Improve the Pharmacological Profile of Therapeutic Peptides. Current Protein and Peptide Science, 2020, 21, 332-333.	1.4	0
129	Antipseudomonal and Immunomodulatory Properties of Esc Peptides: Promising Features for Treatment of Chronic Infectious Diseases and Inflammation. International Journal of Molecular Sciences, 2021, 22, 557.	4.1	O
130	The Triprenylated Anthranoid Ferruginin A, a Promising Scaffold for the Development of Novel Antibiotics against Gram-Positive Bacteria. Antibiotics, 2022, 11, 84.	3.7	0