Fei Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5263031/publications.pdf

Version: 2024-02-01

		1162367	1473754	
9	237	8	9	
papers	citations	h-index	g-index	
9	9	9	182	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATION
1	A Novel Propane Monooxygenase Initiating Degradation of 1,4-Dioxane by <i>Mycobacterium dioxanotrophicus</i> PH-06. Environmental Science and Technology Letters, 2018, 5, 86-91.	3.9	53
2	Synchronic Biotransformation of 1,4-Dioxane and 1,1-Dichloroethylene by a Gram-Negative Propanotroph <i>Azoarcus</i> sp. DD4. Environmental Science and Technology Letters, 2018, 5, 526-532.	3.9	37
3	Distinct Catalytic Behaviors between Two 1,4-Dioxane-Degrading Monooxygenases: Kinetics, Inhibition, and Substrate Range. Environmental Science & Envi	4.6	29
4	Discovery of an Inducible Toluene Monooxygenase That Cooxidizes 1,4-Dioxane and 1,1-Dichloroethylene in Propanotrophic <i>Azoarcus</i> sp. Strain DD4. Applied and Environmental Microbiology, 2020, 86, .	1.4	26
5	Sequential anaerobic and aerobic bioaugmentation for commingled groundwater contamination of trichloroethene and 1,4-dioxane. Science of the Total Environment, 2021, 774, 145118.	3.9	25
6	Synthesis of magnetic framework composites for the discrimination of Escherichia coli at the strain level. Analytica Chimica Acta, 2015, 868, 36-44.	2.6	23
7	Comparative proteomic analysis of phenol degradation process by Arthrobacter. International Biodeterioration and Biodegradation, 2016, 110, 189-198.	1.9	20
8	Cometabolic degradation of 1,4-dioxane by a tetrahydrofuran-growing Arthrobacter sp. WN18. Ecotoxicology and Environmental Safety, 2021, 217, 112206.	2.9	17
9	Complete Genome Sequence of <i>Azoarcus</i> sp. Strain DD4, a Gram-Negative Propanotroph That Degrades 1,4-Dioxane and 1,1-Dichloroethylene. Microbiology Resource Announcements, 2019, 8, .	0.3	7