
Pilar Martinez-Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5262817/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anti-Inflammatory Activity of Human IgG4 Antibodies by Dynamic Fab Arm Exchange. Science, 2007, 317, 1554-1557.	6.0	846
2	Delivery of peptide and protein drugs over the blood–brain barrier. Progress in Neurobiology, 2009, 87, 212-251.	2.8	245
3	A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. Journal of Autoimmunity, 2014, 52, 139-145.	3.0	244
4	Ceramide function in the brain: when a slight tilt is enough. Cellular and Molecular Life Sciences, 2013, 70, 181-203.	2.4	192
5	Muscle-specific kinase myasthenia gravis IgG4 autoantibodies cause severe neuromuscular junction dysfunction in mice. Brain, 2012, 135, 1081-1101.	3.7	180
6	Pathophysiology of myasthenia gravis with antibodies to the acetylcholine receptor, muscle-specific kinase and low-density lipoprotein receptor-related protein 4. Autoimmunity Reviews, 2013, 12, 918-923.	2.5	143
7	Proteasome Inhibition with Bortezomib Depletes Plasma Cells and Autoantibodies in Experimental Autoimmune Myasthenia Gravis. Journal of Immunology, 2011, 186, 2503-2513.	0.4	115
8	Antibody effector mechanisms in myasthenia gravis—Pathogenesis at the neuromuscular junction. Autoimmunity, 2010, 43, 353-370.	1.2	101
9	Activation of the <scp>NLRP</scp> 3 inflammasome in microglia: the role of ceramide. Journal of Neurochemistry, 2017, 143, 534-550.	2.1	101
10	lgG4 autoantibodies against muscle-specific kinase undergo Fab-arm exchange in myasthenia gravis patients. Journal of Autoimmunity, 2017, 77, 104-115.	3.0	92
11	Implication of doubleâ€stranded RNA signaling in the etiology of autoimmune myasthenia gravis. Annals of Neurology, 2013, 73, 281-293.	2.8	73
12	Goodpasture Antigen-binding Protein, the Kinase That Phosphorylates the Goodpasture Antigen, Is an Alternatively Spliced Variant Implicated in Autoimmune Pathogenesis. Journal of Biological Chemistry, 2000, 275, 40392-40399.	1.6	69
13	Increased expression of rapsyn in muscles prevents acetylcholine receptor loss in experimental autoimmune myasthenia gravis. Brain, 2005, 128, 2327-2337.	3.7	66
14	In vivo electroporation of the central nervous system: A non-viral approach for targeted gene delivery. Progress in Neurobiology, 2010, 92, 227-244.	2.8	66
15	MuSK autoantibodies in myasthenia gravis detected by cell based assay — A multinational study. Journal of Neuroimmunology, 2015, 284, 10-17.	1.1	63
16	Absence of <i>N</i> -Methyl- _{<scp>D</scp>} -Aspartate Receptor IgG Autoantibodies in Schizophrenia. JAMA Psychiatry, 2015, 72, 731.	6.0	58
17	Congenital Myasthenic Syndrome Type 19 Is Caused by Mutations in COL13A1, Encoding the Atypical Non-fibrillar Collagen Type XIII α1 Chain. American Journal of Human Genetics, 2015, 97, 878-885.	2.6	57
18	Titin antibodies in "seronegative―myasthenia gravis — A new role for an old antigen. Journal of Neuroimmunology, 2016, 292, 108-115.	1.1	57

#	Article	IF	CITATIONS
19	Sphingolipids as prognostic biomarkers of neurodegeneration, neuroinflammation, and psychiatric diseases and their emerging role in lipidomic investigation methods. Advanced Drug Delivery Reviews, 2020, 159, 232-244.	6.6	56
20	Sphingolipids in Alzheimer's disease, how can we target them?. Advanced Drug Delivery Reviews, 2020, 159, 214-231.	6.6	53
21	Standardization of the experimental autoimmune myasthenia gravis (EAMG) model by immunization of rats with Torpedo californica acetylcholine receptors — Recommendations for methods and experimental designs. Experimental Neurology, 2015, 270, 18-28.	2.0	51
22	Dietary Sargassum fusiforme improves memory and reduces amyloid plaque load in an Alzheimer's disease mouse model. Scientific Reports, 2019, 9, 4908.	1.6	51
23	Astrocytic ceramide as possible indicator of neuroinflammation. Journal of Neuroinflammation, 2019, 16, 48.	3.1	50
24	The auto-antigen repertoire in myasthenia gravis. Autoimmunity, 2010, 43, 380-400.	1.2	48
25	B cell characterization and reactivity analysis in multiple sclerosis. Autoimmunity Reviews, 2009, 8, 654-658.	2.5	47
26	Proteasome Inhibition with Bortezomib Depletes Plasma Cells and Specific Autoantibody Production in Primary Thymic Cell Cultures from Early-Onset Myasthenia Gravis Patients. Journal of Immunology, 2014, 193, 1055-1063.	0.4	45
27	Characterization of pathogenic monoclonal autoantibodies derived from muscle-specific kinase myasthenia gravis patients. JCI Insight, 2019, 4, .	2.3	43
28	DGAT1 overexpression in muscle by in vivo DNA electroporation increases intramyocellular lipid content. Journal of Lipid Research, 2005, 46, 230-236.	2.0	41
29	Clonal heterogeneity of thymic B cells from early-onset myasthenia gravis patients with antibodies against the acetylcholine receptor. Journal of Autoimmunity, 2014, 52, 101-112.	3.0	41
30	Paradoxical Increase in TAG and DAG Content Parallel the Insulin Sensitizing Effect of Unilateral DGAT1 Overexpression in Rat Skeletal Muscle. PLoS ONE, 2011, 6, e14503.	1.1	39
31	The Effect of Plasma From Muscle-Specific Tyrosine Kinase Myasthenia Patients on Regenerating Endplates. American Journal of Pathology, 2009, 175, 1536-1544.	1.9	37
32	A novel method for making human monoclonal antibodies. Journal of Autoimmunity, 2010, 35, 130-134.	3.0	36
33	Targeting plasma cells with proteasome inhibitors: possible roles in treating myasthenia gravis?. Annals of the New York Academy of Sciences, 2012, 1274, 48-59.	1.8	34
34	Overexpression of Rapsyn in Rat Muscle Increases Acetylcholine Receptor Levels in Chronic Experimental Autoimmune Myasthenia Gravis. American Journal of Pathology, 2007, 170, 644-657.	1.9	33
35	The ceramide transporter and the Goodpasture antigen binding protein: one protein – one function?. Journal of Neurochemistry, 2010, 113, 1369-1386.	2.1	33
36	Low Current-driven Micro-electroporation Allows Efficient In Vivo Delivery of Nonviral DNA into the Adult Mouse Brain. Molecular Therapy, 2010, 18, 1183-1191.	3.7	31

#	Article	IF	CITATIONS
37	Goodpasture Antigen-binding Protein/Ceramide Transporter Binds to Human Serum Amyloid P-Component and Is Present in Brain Amyloid Plaques. Journal of Biological Chemistry, 2012, 287, 14897-14911.	1.6	31
38	Rapid Visualization of Chemically Related Compounds Using Kendrick Mass Defect As a Filter in Mass Spectrometry Imaging. Analytical Chemistry, 2019, 91, 13112-13118.	3.2	31
39	Autoimmunity in psychotic disorders. Where we stand, challenges and opportunities. Autoimmunity Reviews, 2019, 18, 102348.	2.5	30
40	Function of ceramide transfer protein for biogenesis and sphingolipid composition of extracellular vesicles. Journal of Extracellular Vesicles, 2022, 11, .	5.5	29
41	Goodpasture Antigen-binding Protein Is a Soluble Exportable Protein That Interacts with Type IV Collagen. Journal of Biological Chemistry, 2008, 283, 30246-30255.	1.6	26
42	Altered Sphingolipid Balance in Capillary Cerebral Amyloid Angiopathy. Journal of Alzheimer's Disease, 2017, 60, 795-807.	1.2	26
43	Guidelines for pre-clinical assessment of the acetylcholine receptor-specific passive transfer myasthenia gravis model—Recommendations for methods and experimental designs. Experimental Neurology, 2015, 270, 3-10.	2.0	25
44	Autoantibodies in Neuropsychiatric Disorders. Antibodies, 2016, 5, 9.	1.2	22
45	TrkB in the hippocampus and nucleus accumbens differentially modulates depression-like behavior in mice. Behavioural Brain Research, 2016, 296, 15-25.	1.2	22
46	Complement Activation by Ceramide Transporter Proteins. Journal of Immunology, 2014, 192, 1154-1161.	0.4	21
47	<i>Treatment of Myasthenia Gravis by Preventing Acetylcholine Receptor Modulation</i> . Annals of the New York Academy of Sciences, 2008, 1132, 174-179.	1.8	19
48	Fetal asphyctic preconditioning modulates the acute cytokine response thereby protecting against perinatal asphyxia in neonatal rats. Journal of Neuroinflammation, 2013, 10, 14.	3.1	19
49	An in vitro and in vivo study of peptide-functionalized nanoparticles for brain targeting: The importance of selective blood–brain barrier uptake. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1289-1300.	1.7	19
50	Characterization of the thymus in Lrp4 myasthenia gravis: Four cases. Autoimmunity Reviews, 2019, 18, 50-55.	2.5	18
51	Immunosuppression of experimental autoimmune myasthenia gravis by mycophenolate mofetil. Journal of Neuroimmunology, 2008, 201-202, 111-120.	1.1	17
52	Characterization of an anti-fetal AChR monoclonal antibody isolated from a myasthenia gravis patient. Scientific Reports, 2017, 7, 14426.	1.6	17
53	A human-specific TNF-responsive promoter for Goodpasture antigen-binding protein. FEBS Journal, 2005, 272, 5291-5305.	2.2	16
54	Neuropathy-Induced Spinal GAP-43 Expression Is Not a Main Player in the Onset of Mechanical Pain Hypersensitivity. Journal of Neurotrauma, 2011, 28, 2463-2473.	1.7	16

#	Article	IF	CITATIONS
55	CERTL reduces C16 ceramide, amyloid-β levels, and inflammation in a model of Alzheimer's disease. Alzheimer's Research and Therapy, 2021, 13, 45.	3.0	16
56	Silencing rapsyn in vivo decreases acetylcholine receptors and augments sodium channels and secondary postsynaptic membrane folding. Neurobiology of Disease, 2009, 35, 14-23.	2.1	15
57	Autoantibodies to neurotransmitter receptors and ion channels: from neuromuscular to neuropsychiatric disorders. Frontiers in Genetics, 2013, 4, 181.	1.1	14
58	Neuronal Surface Autoantibodies in Neuropsychiatric Disorders: Are There Implications for Depression?. Frontiers in Immunology, 2017, 8, 752.	2.2	14
59	lgG4 Autoantibodies in Organ-Specific Autoimmunopathies: Reviewing Class Switching, Antibody-Producing Cells, and Specific Immunotherapies. Frontiers in Immunology, 2022, 13, 834342.	2.2	14
60	Proteomic analysis of rat tibialis anterior muscles at different stages of experimental autoimmune myasthenia gravis. Journal of Neuroimmunology, 2013, 261, 141-145.	1.1	12
61	The effects of fetal and perinatal asphyxia on neuronal cytokine levels and ceramide metabolism in adulthood. Journal of Neuroimmunology, 2013, 255, 97-101.	1.1	12
62	Silencing of Dok-7 in Adult Rat Muscle Increases Susceptibility to Passive Transfer Myasthenia Gravis. American Journal of Pathology, 2016, 186, 2559-2568.	1.9	12
63	Sphingolipids in Alzheimer's Disease and Related Disorders. Journal of Alzheimer's Disease, 2017, 60, 753-756.	1.2	12
64	Generation of polyclonal antibodies directed against G protein-coupled receptors using electroporation-aided DNA immunization. Journal of Pharmacological and Toxicological Methods, 2008, 58, 27-31.	0.3	11
65	Synthesis, Radiosynthesis, and Preliminary in vitro and in vivo Evaluation of the Fluorinated Ceramide Trafficking Inhibitor (HPA-12) for Brain Applications. Journal of Alzheimer's Disease, 2017, 60, 783-794.	1.2	11
66	MuSK myasthenia gravis and Lambert–Eaton myasthenic syndrome in the same patient. Clinical Neurology and Neurosurgery, 2012, 114, 795-797.	0.6	10
67	Hinge-deleted IgG4 blocker therapy for acetylcholine receptor myasthenia gravis in rhesus monkeys. Scientific Reports, 2017, 7, 992.	1.6	10
68	Anti-GAD antibodies in a cohort of neuropsychiatric patients. Epilepsy and Behavior, 2018, 82, 25-28.	0.9	10
69	Novel neuronal surface autoantibodies in plasma of patients with depression and anxiety. Translational Psychiatry, 2020, 10, 404.	2.4	10
70	FT-ICR Mass Spectrometry Imaging at Extreme Mass Resolving Power Using a Dynamically Harmonized ICR Cell with 11‰ or 21‰ Detection. Analytical Chemistry, 2022, 94, 9316-9326.	3.2	10
71	The expression of the Goodpasture antigen-binding protein (ceramide transporter) in adult rat brain. Journal of Chemical Neuroanatomy, 2009, 38, 97-105.	1.0	9
72	Alpha7 acetylcholine receptor autoantibodies are rare in sera of patients diagnosed with schizophrenia or bipolar disorder. PLoS ONE, 2018, 13, e0208412.	1.1	9

#	Article	IF	CITATIONS
73	Ceramide analog [18F]F-HPA-12 detects sphingolipid disbalance in the brain of Alzheimer's disease transgenic mice by functioning as a metabolic probe. Scientific Reports, 2020, 10, 19354.	1.6	9
74	Absence of Autoantibodies Against Neuronal Surface Antigens in Sera of Patients With Psychotic Disorders. JAMA Psychiatry, 2020, 77, 322.	6.0	8
75	Altered sphingolipid function in Alzheimer's disease; a gene regulatory network approach. Neurobiology of Aging, 2021, 102, 178-187.	1.5	8
76	Reduced thymic expression of ErbB receptors without auto-antibodies against synaptic ErbB in myasthenia gravis. Journal of Neuroimmunology, 2011, 232, 158-165.	1.1	7
77	Pleiotropic Effect of Human ApoE4 on Cerebral Ceramide and Saturated Fatty Acid Levels. Journal of Alzheimer's Disease, 2017, 60, 769-781.	1.2	7
78	Autoimmune psychosis. Lancet Psychiatry,the, 2020, 7, 122-123.	3.7	7
79	Effects of Sex, Age, and Apolipoprotein E Genotype on Brain Ceramides and Sphingosine-1-Phosphate in Alzheimer's Disease and Control Mice. Frontiers in Aging Neuroscience, 2021, 13, 765252.	1.7	7
80	Novel treatment strategies for acetylcholine receptor antibody-positive myasthenia gravis and related disorders. Autoimmunity Reviews, 2022, 21, 103104.	2.5	7
81	Autoantigen induced clonal expansion in immortalized B cells from the peripheral blood of multiple sclerosis patients. Journal of Neuroimmunology, 2013, 261, 98-107.	1.1	6
82	Fetal asphyxia induces acute and persisting changes in the ceramide metabolism in rat brain. Journal of Lipid Research, 2013, 54, 1825-1833.	2.0	6
83	The search for an autoimmune origin of psychotic disorders: Prevalence of autoantibodies against hippocampus antigens, glutamic acid decarboxylase and nuclear antigens. Schizophrenia Research, 2021, 228, 462-471.	1.1	6
84	Generation of Recombinant Human IgG Monoclonal Antibodies from Immortalized Sorted B Cells. Journal of Visualized Experiments, 2015, , e52830.	0.2	5
85	FTY720 decreases ceramides levels in the brain and prevents memory impairments in a mouse model of familial Alzheimer's disease expressing APOE4. Biomedicine and Pharmacotherapy, 2022, 152, 113240.	2.5	5
86	Detection of Peptide-Based Nanoparticles in Blood Plasma by ELISA. PLoS ONE, 2015, 10, e0126136.	1.1	4
87	Autoimmune Encephalitis With mGluR1 Antibodies Presenting With Epilepsy, but Without Cerebellar Signs. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, e1171.	3.1	4
88	Glycine receptor antibodies in PERM: a new channelopathy. Brain, 2014, 137, 2115-2116.	3.7	3
89	Delivery of DNA into the Central Nervous System via Electroporation. Methods in Molecular Biology, 2014, 1121, 157-163.	0.4	3
90	Unchanged expression of the ceramide transfer protein in the acute 6-OHDA neurodegenerative model. Neuroscience Letters, 2012, 506, 39-43.	1.0	1

#	Article	IF	CITATIONS
91	Screening for inborn errors of metabolism in psychotic patients using Next Generation Sequencing. Journal of Psychiatric Research, 2021, 138, 125-129.	1.5	1
92	Immunofluorescence Labeling of Lipid-Binding Proteins CERTs to Monitor Lipid Raft Dynamics. Methods in Molecular Biology, 2021, 2187, 327-335.	0.4	1
93	Unidentified Neuronal Surface IgG Autoantibodies in a Case of Hashimoto's Encephalopathy. Frontiers in Immunology, 2020, 11, 1358.	2.2	0