Christos S Garoufalis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5262737/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Excitons in ZnO Quantum Dots: The Role of Dielectric Confinement. Journal of Physical Chemistry C, 2022, 126, 2833-2838.	3.1	9
2	Design, Energy, Environmental and Cost Analysis of an Integrated Collector Storage Solar Water Heater Based on Multi-Criteria Methodology. Energies, 2022, 15, 1673.	3.1	3
3	Size Engineering of Trap Effects in Oxidized and Hydroxylated ZnSe Quantum Dots. Nano Letters, 2022, 22, 3604-3611.	9.1	13
4	Twisting Enabled Charge Transfer Excitons in Epitaxially Fused Quantum Dot Molecules. Nano Letters, 2022, 22, 4912-4918.	9.1	6
5	Exotic nanoparticles of group IV monochalcogenides as anode materials for Li-Ion batteries. Solid State Communications, 2021, 332, 114326.	1.9	1
6	Excitonic characteristics of blue-emitting quantum dot materials in group II-VI using hybrid time-dependent density functional theory. Physical Review B, 2021, 104, .	3.2	7
7	Structural and Electronic Properties of Small Perovskite Nanoparticles of the Form ABX3 (A = MA,) Tj ETQq1 1 0.	.784314 rg 1.9	gBT ₅ /Overlock
8	Direct sunlight-driven enhanced photocatalytic performance of V2O5 nanorods/ graphene oxide nanocomposites for the degradation of Victoria blue dye. Environmental Research, 2021, 199, 111369.	7.5	18
9	Adsorptive removal of antibiotic ofloxacin in aqueous phase using rGO-MoS2 heterostructure. Journal of Hazardous Materials, 2021, 417, 125982.	12.4	42
10	Quantum Confinement Effects of Thin Co3O4 Films. Atoms, 2021, 9, 70.	1.6	6
11	Structural and optical properties of Be, Mg and Ca nanorods and nanodisks. Physical Chemistry Chemical Physics, 2021, 23, 1849-1858.	2.8	6
12	Band Gap Measurements of Nano-Meter Sized Rutile Thin Films. Nanomaterials, 2020, 10, 2379.	4.1	15
13	Quantum confinement effects of thin ZnO films by experiment and theory. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 120, 114072.	2.7	16
14	Optical properties of zig-zag and armchair ZnO colloidal nanoribbons. Chemical Physics Letters, 2019, 732, 136659.	2.6	8
15	Exotic nanoparticles of group IV monochalcogenides. Solid State Communications, 2019, 295, 38-42.	1.9	2
16	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mi mathvariant="normal">Ga<mml:mi>x</mml:mi></mml:mi </mml:msub> <mml:msub><mml:mi mathvariant="normal">In<mml:mrow><mml:mn>1</mml:mn><mml:mo>â^</mml:mo><mml:mi>x<td>nmi:mi><td>nml:mrow><!--</td--></td></td></mml:mi></mml:mrow></mml:mi </mml:msub>	nmi:mi> <td>nml:mrow><!--</td--></td>	nml:mrow> </td
17	functional theory. Physical Review B, 2019, 100, . Optical study of twin-tanked ICS solar heaters combined with asymmetrical CPC-type reflectors. International Journal of Energy Research, 2019, 43, 884-895.	4.5	3
18	Electronic and Optical Properties of Ultrasmall ABX ₃ (A = Cs,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50) 67 Td (Cł	l ₃

Omega, 2018, 3, 18917-18924.

#	Article	IF	CITATIONS
19	Realization of linearly polarized exciton emission in wurtzite zinc oxide quantum dots. Physical Review B, 2018, 98, .	3.2	13
20	A Study of Quantum Confinement Effects in Ultrathin NiO Films Performed by Experiment and Theory. Materials, 2018, 11, 949.	2.9	20
21	Growth and optical properties of Fe 2 O 3 thin films: A study of quantum confinement effects by experiment and theory. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 89, 67-71.	2.7	24
22	Morphology control of exciton fine structure in polar and nonpolar zinc sulfide nanorods. Scientific Reports, 2017, 7, 9366.	3.3	4
23	Multilayer heterostructures of magnetic Heusler and binary compounds from first principles. Journal of Magnetism and Magnetic Materials, 2016, 401, 138-143.	2.3	2
24	Nonlinear Optical Absorption in Colloidal CdS Quantum Dots: The Role of Dielectric Environment. Journal of Nanoelectronics and Optoelectronics, 2016, 11, 615-619.	0.5	14
25	Excitonic optical properties of wurtzite ZnS quantum dots under pressure. Journal of Chemical Physics, 2015, 142, 114305.	3.0	11
26	Near-band-edge exciton polarization change in ZnO nanowires. Physical Chemistry Chemical Physics, 2015, 17, 1197-1203.	2.8	14
27	Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot–quantum-ring system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 2713-2718.	2.1	30
28	New Insights in the Excitonic Emission of ZnS Colloidal Quantum Dots. Journal of Physical Chemistry C, 2014, 118, 10502-10508.	3.1	7
29	Competition Effects of Electric and Magnetic Fields on Impurity Binding Energy in a Disc-Shaped Quantum Dot in the Presence of Pressure and Temperature. Science of Advanced Materials, 2014, 6, 586-591.	0.7	17
30	Linear and nonlinear optical properties of ZnO/ZnS and ZnS/ZnO core shell quantum dots: Effects of shell thickness, impurity, and dielectric environment. Journal of Applied Physics, 2013, 114, .	2.5	151
31	Strong quantum confinement effects in SnS nanocrystals produced by ultrasound-assisted method. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	21
32	Optical susceptibilities in singly charged ZnO colloidal quantum dots embedded in different dielectric matrices. Journal of Applied Physics, 2013, 113, 054303.	2.5	38
33	Electronic and optical properties of ZnO quantum dots under hydrostatic pressure. Physical Review B, 2013, 87, .	3.2	54
34	Tuning of the Optical Emission Polarization of ZnO Nanorods by an Applied Hydrostatic Pressure. Journal of Physical Chemistry C, 2012, 116, 26592-26597.	3.1	10
35	Stark effect of donor binding energy in a self-assembled GaAs quantum dot subjected to a tilted electric field. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 2712-2716.	2.1	24
36	Tuning the binding energy of surface impurities in cylindrical GaAs/AlGaAs quantum dots by a tilted magnetic field. Journal of Applied Physics, 2012, 112, .	2.5	23

#	Article	IF	CITATIONS
37	Combination effects of tilted electric and magnetic fields on donor binding energy in a GaAs/AlGaAs cylindrical quantum dot. Journal Physics D: Applied Physics, 2012, 45, 235102.	2.8	35
38	Intense Quantum Confinement Effects in Cu ₂ O Thin Films. Journal of Physical Chemistry C, 2011, 115, 14839-14843.	3.1	60
39	Linear and nonlinear optical absorption coefficients in inverse parabolic quantum wells under static external electric field. European Physical Journal B, 2011, 84, 241-247.	1.5	115
40	Interfacial Impregnation Chemistry in the Synthesis of Nickel Catalysts Supported on Titania. Chemistry - A European Journal, 2011, 17, 1201-1213.	3.3	13
41	Oxygen Terminated Goldberg Type Si Quantum Dots as Candidates for Stable Si Fullerene-Like Cages. Journal of Computational and Theoretical Nanoscience, 2011, 8, 2279-2284.	0.4	0
42	Elucidation of the surface configuration of the Co(II) and Ni(II) aqua complexes and of the Cr(VI), Mo(VI) and W(VI) monomer and polymer oxo–species deposited on the titania surface during impregnation. Studies in Surface Science and Catalysis, 2010, 175, 117-125.	1.5	1
43	Interfacial Impregnation Chemistry in the Synthesis of Cobalt Catalysts Supported on Titania. Chemistry - A European Journal, 2009, 15, 13090-13104.	3.3	23
44	A parallel study of Ni@Si12 and Cu@Si12 nanoclusters. Journal of Mathematical Chemistry, 2009, 46, 971-980.	1.5	11
45	Mixed silicon–germanium nanocrystals: a detailed study of Si x Ge47â^'x :H. Journal of Mathematical Chemistry, 2009, 46, 942-951.	1.5	5
46	Optical properties of ultra small Si nanoparticles: potential role of surface reconstruction and oxygen contamination. Journal of Mathematical Chemistry, 2009, 46, 952-961.	1.5	6
47	Optical gap and excitation energies of small Ge nanocrystals. Journal of Mathematical Chemistry, 2009, 46, 934-941.	1.5	8
48	Mapping the surface (hydr)oxo-groups of titanium oxide and its interface with an aqueous solution: The state of the art and a new approach. Advances in Colloid and Interface Science, 2008, 142, 20-42.	14.7	68
49	Electric polarizabilities of the CxSi4-x (0 ⩽ x ⩽ 4) clusters. A conventional and time-dependent density functional theory study. Journal of Computational Methods in Sciences and Engineering, 2008, 7, 287-296.	0.2	0
50	Structural properties and magic structures in hydrogenated finite and infinite silicon nanowires. Applied Physics Letters, 2007, 91, 203112.	3.3	16
51	High accuracy calculations of the optical gap and absorption spectrum of oxygen contaminated Si nanocrystals. Physical Chemistry Chemical Physics, 2006, 8, 808-813.	2.8	45
52	Structure and properties of theNi@Si12cluster from all-electronab initiocalculations. Physical Review B, 2006, 73, .	3.2	43
53	Towards the local structure of the Co(II), Ni(II), Cr(VI) and W(VI) ionic species formed upon impregnation on titania. Studies in Surface Science and Catalysis, 2006, , 809-816.	1.5	10
54	High LevelAb InitioCalculations of the Optical Gap of Small Silicon Quantum Dots. Physical Review Letters, 2001, 87, 276402.	7.8	156

#	Article	IF	CITATIONS
55	Electronic and Optical Properties of ABX3 (A = Cs, CH3NH3/B = Ge, Pb, Sn, Ca, Sr/X = Cl, Br, I) Perovskite Quantum Dots. , 0, , .		ο
56	Electronic and Optical Properties of ABX3 (A = Cs, CH3NH3/B = Ge, Pb, Sn, Ca, Sr/X = Cl, Br, I) Perovskite Quantum Dots. , 0, , .		0