Yu-Sheng Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5262243/publications.pdf

Version: 2024-02-01

19 papers	9,703 citations	17 h-index	752698 20 g-index
20	20	20	8330 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Rechargeable Lithium–Sulfur Batteries. Chemical Reviews, 2014, 114, 11751-11787.	47.7	3,842
2	Challenges and Prospects of Lithium–Sulfur Batteries. Accounts of Chemical Research, 2013, 46, 1125-1134.	15.6	1,962
3	Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nature Communications, 2012, 3, 1166.	12.8	1,298
4	A new approach to improve cycle performance of rechargeable lithium–sulfur batteries by inserting a free-standing MWCNT interlayer. Chemical Communications, 2012, 48, 8817.	4.1	689
5	A strategic approach to recharging lithium-sulphur batteries for long cycle life. Nature Communications, 2013, 4, 2985.	12.8	376
6	Highly Reversible Lithium/Dissolved Polysulfide Batteries with Carbon Nanotube Electrodes. Angewandte Chemie - International Edition, 2013, 52, 6930-6935.	13.8	291
7	Improved lithium–sulfur cells with a treated carbon paper interlayer. Physical Chemistry Chemical Physics, 2013, 15, 2291.	2.8	241
8	A facile in situ sulfur deposition route to obtain carbon-wrapped sulfur composite cathodes for lithium–sulfur batteries. Electrochimica Acta, 2012, 77, 272-278.	5.2	171
9	Self-weaving sulfur–carbon composite cathodes for high rate lithium–sulfur batteries. Physical Chemistry Chemical Physics, 2012, 14, 14495.	2.8	163
10	Sulfur-Polypyrrole Composite Cathodes for Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2012, 159, A1420-A1424.	2.9	141
11	Li ₂ Sâ€Carbon Sandwiched Electrodes with Superior Performance for Lithiumâ€Sulfur Batteries. Advanced Energy Materials, 2014, 4, 1300655.	19.5	141
12	Sulfur–Carbon Nanocomposite Cathodes Improved by an Amphiphilic Block Copolymer for High-Rate Lithium–Sulfur Batteries. ACS Applied Materials & Samp; Interfaces, 2012, 4, 6046-6052.	8.0	98
13	In Charge of the World: Electrochemical Energy Storage. Journal of Physical Chemistry Letters, 2013, 4, 1295-1297.	4.6	60
14	Fast, Reversible Lithium Storage with a Sulfur/Longâ€Chainâ€Polysulfide Redox Couple. Chemistry - A European Journal, 2013, 19, 8621-8626.	3.3	58
15	Sulfur/lithium-insertion compound composite cathodes for Li–S batteries. Journal of Power Sources, 2014, 270, 101-105.	7.8	57
16	Lithium Silicates in Anode Materials for Li-Ion and Li Metal Batteries. Batteries, 2022, 8, 2.	4.5	19
17	Graphene-Enhanced Battery Components in Rechargeable Lithium-Ion and Lithium Metal Batteries. Journal of Carbon Research, 2021, 7, 65.	2.7	8
18	Lithium Battery Model and Its Application to Parallel Charging. Energies, 2022, 15, 4767.	3.1	4

#	Article	IF	CITATIONS
19	Low-fire Processing of Microwave BaTi4O9Dielectric with BaO–Li2O–B2O3–SiO2–ZnO Glass. Japanese Journal of Applied Physics, 2008, 47, 7254-7256.	1.5	3