
Akihiro Yamanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/526213/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hypothalamic Orexin Neurons Regulate Arousal According to Energy Balance in Mice. Neuron, 2003, 38, 701-713.	3.8	833
2	Input of Orexin/Hypocretin Neurons Revealed by a Genetically Encoded Tracer in Mice. Neuron, 2005, 46, 297-308.	3.8	430
3	Interaction between the Corticotropin-Releasing Factor System and Hypocretins (Orexins): A Novel Circuit Mediating Stress Response. Journal of Neuroscience, 2004, 24, 11439-11448.	1.7	406
4	Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature, 2001, 410, 207-212.	13.7	349
5	Des-Acyl Ghrelin Induces Food Intake by a Mechanism Independent of the Growth Hormone Secretagogue Receptor. Endocrinology, 2006, 147, 2306-2314.	1.4	334
6	A Top-Down Cortical Circuit for Accurate Sensory Perception. Neuron, 2015, 86, 1304-1316.	3.8	308
7	Orexins Activate Histaminergic Neurons via the Orexin 2 Receptor. Biochemical and Biophysical Research Communications, 2002, 290, 1237-1245.	1.0	281
8	Orexin-induced food intake involves neuropeptide Y pathway. Brain Research, 2000, 859, 404-409.	1.1	235
9	Acute Optogenetic Silencing of Orexin/Hypocretin Neurons Induces Slow-Wave Sleep in Mice. Journal of Neuroscience, 2011, 31, 10529-10539.	1.7	235
10	Regulation of orexin neurons by the monoaminergic and cholinergic systems. Biochemical and Biophysical Research Communications, 2003, 303, 120-129.	1.0	228
11	Orexins (hypocretins) directly interact with neuropeptide Y, POMC and glucose-responsive neurons to regulate Ca2+ signaling in a reciprocal manner to leptin: orexigenic neuronal pathways in the mediobasal hypothalamus. European Journal of Neuroscience, 2004, 19, 1524-1534.	1.2	220
12	Orexins/hypocretins regulate drinking behaviour1Published on the World Wide Web on 4 August 1999.1. Brain Research, 1999, 842, 256-261.	1.1	204
13	Optogenetic Activation of Dorsal Raphe Serotonin Neurons Enhances Patience for Future Rewards. Current Biology, 2014, 24, 2033-2040.	1.8	200
14	Chronic intracerebroventricular administration of orexin-A to rats increases food intake in daytime, but has no effect on body weight. Brain Research, 1999, 849, 248-252.	1.1	197
15	Optogenetic Manipulation of Activity and Temporally Controlled Cell-Specific Ablation Reveal a Role for MCH Neurons in Sleep/Wake Regulation. Journal of Neuroscience, 2014, 34, 6896-6909.	1.7	187
16	Serotonergic Regulation of the Orexin/Hypocretin Neurons through the 5-HT1A Receptor. Journal of Neuroscience, 2004, 24, 7159-7166.	1.7	184
17	Characterization of a family of endogenous neuropeptide ligands for the G protein-coupled receptors GPR7 and GPR8. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6251-6256.	3.3	183
18	Conditional Ablation of Orexin/Hypocretin Neurons: A New Mouse Model for the Study of Narcolepsy and Orexin System Function. Journal of Neuroscience, 2014, 34, 6495-6509.	1.7	181

Akihiro Yamanaka

#	Article	IF	CITATIONS
19	Expanding the Repertoire of Optogenetically Targeted Cells with an Enhanced Gene Expression System. Cell Reports, 2012, 2, 397-406.	2.9	159
20	A neuropeptide ligand of the G protein-coupled receptor GPR103 regulates feeding, behavioral arousal, and blood pressure in mice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7438-7443.	3.3	158
21	Orexin Receptor Type-1 Couples Exclusively to Pertussis Toxin-Insensitive G-Proteins, While Orexin Receptor Type-2 Couples to Both Pertussis Toxin-Sensitive and -Insensitive G-Proteins. Journal of Pharmacological Sciences, 2003, 92, 259-266.	1.1	155
22	Optogenetic Countering of Glial Acidosis Suppresses Glial Glutamate Release and Ischemic Brain Damage. Neuron, 2014, 81, 314-320.	3.8	154
23	The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Frontiers in Endocrinology, 2013, 4, 18.	1.5	142
24	REM sleep–active MCH neurons are involved in forgetting hippocampus-dependent memories. Science, 2019, 365, 1308-1313.	6.0	138
25	Cholecystokinin Activates Orexin/Hypocretin Neurons through the Cholecystokinin A Receptor. Journal of Neuroscience, 2005, 25, 7459-7469.	1.7	133
26	Top-down cortical input during NREM sleep consolidates perceptual memory. Science, 2016, 352, 1315-1318.	6.0	120
27	Long-lasting silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice. Behavioural Brain Research, 2013, 255, 64-74.	1.2	117
28	Orexin Neurons Are Directly and Indirectly Regulated by Catecholamines in a Complex Manner. Journal of Neurophysiology, 2006, 96, 284-298.	0.9	114
29	Upconversion amplification through dielectric superlensing modulation. Nature Communications, 2019, 10, 1391.	5.8	114
30	Concurrent and robust regulation of feeding behaviors and metabolism by orexin neurons. Neuropharmacology, 2014, 85, 451-460.	2.0	113
31	Near-infrared (NIR) up-conversion optogenetics. Scientific Reports, 2015, 5, 16533.	1.6	109
32	Orexin signaling in GABAergic lateral habenula neurons modulates aggressive behavior in male mice. Nature Neuroscience, 2020, 23, 638-650.	7.1	98
33	Orexin Directly Excites Orexin Neurons through Orexin 2 Receptor. Journal of Neuroscience, 2010, 30, 12642-12652.	1.7	96
34	The integrative role of orexin/hypocretin neurons in nociceptive perception and analgesic regulation. Scientific Reports, 2016, 6, 29480.	1.6	92
35	Modulation of water efflux through functional interaction between TRPV4 and TMEM16A/anoctamin 1. FASEB Journal, 2014, 28, 2238-2248.	0.2	90
36	Opiates increase the number of hypocretin-producing cells in human and mouse brain and reverse cataplexy in a mouse model of narcolepsy. Science Translational Medicine, 2018, 10, .	5.8	90

#	Article	IF	CITATIONS
37	GABABreceptor-mediated modulation of hypocretin/orexin neurones in mouse hypothalamus. Journal of Physiology, 2006, 574, 399-414.	1.3	87
38	Optogenetic activation of serotonergic neurons enhances anxiety-like behaviour in mice. International Journal of Neuropsychopharmacology, 2014, 17, 1777-1783.	1.0	87
39	Atomistic design of microbial opsin-based blue-shifted optogenetics tools. Nature Communications, 2015, 6, 7177.	5.8	78
40	Involvement of TRPV2 Activation in Intestinal Movement through Nitric Oxide Production in Mice. Journal of Neuroscience, 2010, 30, 16536-16544.	1.7	75
41	Hypocretin/orexin and nociceptin/orphanin FQ coordinately regulate analgesia in a mouse model of stress-induced analgesia. Journal of Clinical Investigation, 2008, 118, 2471-81.	3.9	71
42	Influence of Mold Flux on Initial Solidification of Hypo-Peritectic Steel in a Continuous Casting Mold. ISIJ International, 2012, 52, 1310-1319.	0.6	67
43	TRPV4 activation at the physiological temperature is a critical determinant of neuronal excitability and behavior. Pflugers Archiv European Journal of Physiology, 2015, 467, 2495-2507.	1.3	66
44	Prevention of Slab Surface Transverse Cracking by Microstructure Control. ISIJ International, 2003, 43, 1742-1750.	0.6	63
45	Vasopressin Increases Locomotion through a V1a Receptor in Orexin/Hypocretin Neurons: Implications for Water Homeostasis. Journal of Neuroscience, 2008, 28, 228-238.	1.7	60
46	Activation of ventral tegmental area dopaminergic neurons reverses pathological allodynia resulting from nerve injury or bone cancer. Molecular Pain, 2018, 14, 174480691875640.	1.0	57
47	Calcium Transient Dynamics of Neural Ensembles in the Primary Motor Cortex of Naturally Behaving Monkeys. Cell Reports, 2018, 24, 2191-2195.e4.	2.9	57
48	GABA _B Agonism Promotes Sleep and Reduces Cataplexy in Murine Narcolepsy. Journal of Neuroscience, 2014, 34, 6485-6494.	1.7	56
49	Lateral hypothalamic circuits for sleep–wake control. Current Opinion in Neurobiology, 2017, 44, 94-100.	2.0	56
50	Peripheral and spinal mechanisms of nociception in a rat reserpine-induced pain model. Pain, 2015, 156, 415-427.	2.0	55
51	Oxytocin–Oxytocin Receptor Systems Facilitate Social Defeat Posture in Male Mice. Endocrinology, 2018, 159, 763-775.	1.4	55
52	Role of GABA in the regulation of the central circadian clock of the suprachiasmatic nucleus. Journal of Physiological Sciences, 2018, 68, 333-343.	0.9	54
53	Reward probability and timing uncertainty alter the effect of dorsal raphe serotonin neurons on patience. Nature Communications, 2018, 9, 2048.	5.8	54
54	Different roles of distinct serotonergic pathways in anxiety-like behavior, antidepressant-like, and anti-impulsive effects. Neuropharmacology, 2020, 167, 107703.	2.0	53

Ακιμικό Υλμανακά

#	Article	IF	CITATIONS
55	GABA neurons in the ventral tegmental area regulate non-rapid eye movement sleep in mice. ELife, 2019, 8, .	2.8	53
56	Nociception originating from the crural fascia in rats. Pain, 2013, 154, 1103-1114.	2.0	51
57	Hypothalamic regulation of the sleep/wake cycle. Neuroscience Research, 2017, 118, 74-81.	1.0	51
58	The mammalian circadian pacemaker regulates wakefulness via CRF neurons in the paraventricular nucleus of the hypothalamus. Science Advances, 2020, 6, .	4.7	51
59	Remote control of neural function by X-ray-induced scintillation. Nature Communications, 2021, 12, 4478.	5.8	50
60	Orexins Suppress Catecholamine Synthesis and Secretion in Cultured PC12 Cells. Biochemical and Biophysical Research Communications, 2000, 274, 310-315.	1.0	48
61	Subtype-specific Trafficking of Endothelin Receptors. Journal of Biological Chemistry, 2000, 275, 8664-8671.	1.6	46
62	Orexin-mediated feeding behavior involves both leptin-sensitive and -insensitive pathways. Physiology and Behavior, 2002, 77, 251-257.	1.0	46
63	Growth of Solidified Shell Just below the Meniscus in Continuous Casting Mold. ISIJ International, 2009, 49, 365-374.	0.6	46
64	Neuronal SIRT1 regulates macronutrient-based diet selection through FGF21 and oxytocin signalling in mice. Nature Communications, 2018, 9, 4604.	5.8	46
65	Effects of orexin on cultured porcine adrenal medullary and cortex cells. Regulatory Peptides, 2002, 104, 125-130.	1.9	45
66	Activation of Polycystic Kidney Disease-2-like 1 (PKD2L1)-PKD1L3 Complex by Acid in Mouse Taste Cells. Journal of Biological Chemistry, 2010, 285, 17277-17281.	1.6	45
67	Challenges in the development of therapeutics for narcolepsy. Progress in Neurobiology, 2017, 152, 89-113.	2.8	45
68	The Role of Orexin/Hypocretin in the Central Nervous System and Peripheral Tissues. Vitamins and Hormones, 2012, 89, 19-33.	0.7	43
69	GABA in the suprachiasmatic nucleus refines circadian output rhythms in mice. Communications Biology, 2019, 2, 232.	2.0	43
70	Influence of Inhibitory Serotonergic Inputs to Orexin/Hypocretin Neurons on the Diurnal Rhythm of Sleep and Wakefulness. Sleep, 2013, 36, 1391-1404.	0.6	42
71	Insular neural system controls decision-making in healthy and methamphetamine-treated rats. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3930-9.	3.3	40
72	Progressive Loss of the Orexin Neurons Reveals Dual Effects on Wakefulness. Sleep, 2016, 39, 369-377.	0.6	39

#	Article	IF	CITATIONS
73	Ectopic expression of melanopsin in orexin/hypocretin neurons enables control of wakefulness of mice in vivo by blue light. Neuroscience Research, 2013, 75, 23-28.	1.0	37
74	Involvement of mesolimbic dopaminergic network in neuropathic pain relief by treadmill exercise. Molecular Pain, 2016, 12, 174480691668156.	1.0	37
75	Neuronal Heterotopias Affect the Activities of Distant Brain Areas and Lead to Behavioral Deficits. Journal of Neuroscience, 2015, 35, 12432-12445.	1.7	36
76	Optogenetic activation of serotonergic terminals facilitates GABAergic inhibitory input to orexin/hypocretin neurons. Scientific Reports, 2016, 6, 36039.	1.6	34
77	A gradual temporal shift of dopamine responses mirrors the progression of temporal difference error in machine learning. Nature Neuroscience, 2022, 25, 1082-1092.	7.1	32
78	Anatomical Evidence for a Direct Projection from Purkinje Cells in the Mouse Cerebellar Vermis to Medial Parabrachial Nucleus. Frontiers in Neural Circuits, 2018, 12, 6.	1.4	31
79	Serotonergic projections to the orbitofrontal and medial prefrontal cortices differentially modulate waiting for future rewards. Science Advances, 2020, 6, .	4.7	30
80	The Role of Dorsal Raphe Serotonin Neurons in the Balance between Reward and Aversion. International Journal of Molecular Sciences, 2020, 21, 2160.	1.8	29
81	Acute Aversive Stimuli Rapidly Increase the Activity of Ventral Tegmental Area Dopamine Neurons in Awake Mice. Neuroscience, 2018, 386, 16-23.	1.1	28
82	Glutamatergic neurons in the medial prefrontal cortex mediate the formation and retrieval of cocaineâ€associated memories in mice. Addiction Biology, 2020, 25, e12723.	1.4	28
83	The manipulation of neural and cellular activities by ectopic expression of melanopsin. Neuroscience Research, 2013, 75, 3-5.	1.0	27
84	The regulation of sleep and wakefulness by the hypothalamic neuropeptide orexin/hypocretin. Nagoya Journal of Medical Science, 2013, 75, 29-36.	0.6	27
85	Claustrum mediates bidirectional and reversible control of stress-induced anxiety responses. Science Advances, 2022, 8, eabi6375.	4.7	27
86	Prediction of Density of Carbon Steels ISIJ International, 2002, 42, 375-384.	0.6	26
87	Theory of Spin-State Selective Nonlocal Screening in Co 2 <i>p</i> X-ray Photoemission Spectrum of LaCoO ₃ . Journal of the Physical Society of Japan, 2015, 84, 073706.	0.7	26
88	High Temperature Deformation Behavior of Peritectic Carbon Steel during Solidification ISIJ International, 2002, 42, 964-973.	0.6	25
89	Muscular mechanical hyperalgesia after lengthening contractions in rats depends on stretch velocity and range of motion. European Journal of Pain, 2017, 21, 125-139.	1.4	24
90	Involvement of orexin neurons in fasting- and central adenosine-induced hypothermia. Scientific Reports, 2018, 8, 2717.	1.6	24

#	Article	IF	CITATIONS
91	Threeâ€dimensional bioprinting human cardiac tissue chips of using a painting needle method. Biotechnology and Bioengineering, 2019, 116, 3136-3142.	1.7	23
92	Direct projections from hypothalamic orexin neurons to brainstem cardiac vagal neurons. Neuroscience, 2016, 339, 47-53.	1.1	21
93	Dissociating orexin-dependent and -independent functions of orexin neurons using novel Orexin-Flp knock-in mice. ELife, 2019, 8, .	2.8	21
94	Dual orexin and MCH neuron-ablated mice display severe sleep attacks and cataplexy. ELife, 2020, 9, .	2.8	20
95	Hypoxia and hypercapnia inhibit hypothalamic orexin neurons in rats. Journal of Neurophysiology, 2016, 116, 2250-2259.	0.9	19
96	Opposing Roles of Dopamine Receptor D1- and D2-Expressing Neurons in the Anteromedial Olfactory Tubercle in Acquisition of Place Preference in Mice. Frontiers in Behavioral Neuroscience, 2019, 13, 50.	1.0	18
97	Chronic Alterations in Monoaminergic Cells in the Locus Coeruleus in Orexin Neuron-Ablated Narcoleptic Mice. PLoS ONE, 2013, 8, e70012.	1.1	17
98	Optogenetic identification of hypothalamic orexin neuron projections to paraventricular spinally projecting neurons. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H808-H817.	1.5	17
99	Green-Sensitive, Long-Lived, Step-Functional Anion Channelrhodopsin-2 Variant as a High-Potential Neural Silencing Tool. Journal of Physical Chemistry Letters, 2020, 11, 6214-6218.	2.1	17
100	Generation Mechanism of Unevenness of Ultra Low Carbon Steel at Initial Stage of Solidification. ISIJ International, 2010, 50, 435-444.	0.6	16
101	Inactivation of Serotonergic Neurons in the Rostral Medullary Raphé Attenuates Stress-Induced Tachypnea and Tachycardia in Mice. Frontiers in Physiology, 2018, 9, 832.	1.3	16
102	Disruption of model-based decision making by silencing of serotonin neurons in the dorsal raphe nucleus. Current Biology, 2021, 31, 2446-2454.e5.	1.8	16
103	Neuropeptide B Induces Slow Wave Sleep in Mice. Sleep, 2011, 34, 31-37.	0.6	15
104	Accumbal D2R-medium spiny neurons regulate aversive behaviors through PKA-Rap1 pathway. Neurochemistry International, 2021, 143, 104935.	1.9	14
105	Animal models of narcolepsy and the hypocretin/orexin system: Past, present, and future. Sleep, 2021, 44, .	0.6	14
106	Relief of neuropathic pain by cell-specific manipulation of nucleus accumbens dopamine D1- and D2-receptor-expressing neurons. Molecular Brain, 2022, 15, 10.	1.3	14
107	Influence of Mold Flux on Initial Solidification of Hypo-Peritectic Steel in A Continuous Casting Mold. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2014, 100, 581-590.	0.1	13
108	Sex differences in olfactory-induced neural activation of the amygdala. Behavioural Brain Research, 2018, 346, 96-104.	1.2	13

#	Article	IF	CITATIONS
109	Acute nociceptive stimuli rapidly induce the activity of serotonin and noradrenalin neurons in the brain stem of awake mice. IBRO Reports, 2019, 7, 1-9.	0.3	13
110	Opposing Ventral Striatal Medium Spiny Neuron Activities Shaped by Striatal Parvalbumin-Expressing Interneurons during Goal-Directed Behaviors. Cell Reports, 2020, 31, 107829.	2.9	13
111	Aversive emotion rapidly activates orexin neurons and increases heart rate in freely moving mice. Molecular Brain, 2021, 14, 104.	1.3	13
112	Parallel Arousal Pathways in the Lateral Hypothalamus. ENeuro, 2018, 5, ENEURO.0228-18.2018.	0.9	13
113	New Approaches for the Study of Orexin Function. Journal of Neuroendocrinology, 2010, 22, 818-824.	1.2	12
114	Extracellular N-acetylaspartylglutamate released in the nucleus accumbens modulates the pain sensation: Analysis using a microdialysis/mass spectrometry integrated system. Molecular Pain, 2018, 14, 174480691875493.	1.0	12
115	Transgenic Archaerhodopsin-3 Expression in Hypocretin/Orexin Neurons Engenders Cellular Dysfunction and Features of Type 2 Narcolepsy. Journal of Neuroscience, 2019, 39, 9435-9452.	1.7	12
116	Acute restraint stress augments the rewarding memory of cocaine through activation of $\hat{l}\pm 1$ adrenoceptors in the medial prefrontal cortex of mice. Neuropharmacology, 2020, 166, 107968.	2.0	12
117	Hypocretin/Orexin Interactions with Norepinephrine Contribute to the Opiate Withdrawal Syndrome. Journal of Neuroscience, 2022, 42, 255-263.	1.7	12
118	Local neurogenic regulation of rat hindlimb circulation: CO2 -induced release of calcitonin gene-related peptide from sensory nerves. British Journal of Pharmacology, 1997, 122, 710-714.	2.7	11
119	Partial ablation of the orexin field induces a sub-narcoleptic phenotype in a conditional mouse model of orexin neurodegeneration. Sleep, 2018, 41, .	0.6	11
120	Thinâ€fibre receptors expressing acidâ€sensing ion channel 3 contribute to muscular mechanical hypersensitivity after exercise. European Journal of Pain, 2019, 23, 1801-1813.	1.4	11
121	Identification of substances which regulate activity of corticotropin-releasing factor-producing neurons in the paraventricular nucleus of the hypothalamus. Scientific Reports, 2020, 10, 13639.	1.6	11
122	Direct evidence that the brain reward system is involved in the control of scratching behaviors induced by acute and chronic itch. Biochemical and Biophysical Research Communications, 2021, 534, 624-631.	1.0	11
123	The Impacts of Age and Sex in a Mouse Model of Childhood Narcolepsy. Frontiers in Neuroscience, 2021, 15, 644757.	1.4	11
124	Optogenetic activation of DRN 5-HT neurons induced active wakefulness, not quiet wakefulness. Brain Research Bulletin, 2021, 177, 129-142.	1.4	11
125	Dissolution of Refractory Elements to Titanium Alloy in VAR ISIJ International, 1992, 32, 600-606.	0.6	10
126	Light-induced silencing of neural activity in Rosa26 knock-in mice conditionally expressing the microbial halorhodopsin eNpHR2.0. Neuroscience Research, 2013, 75, 53-58.	1.0	10

#	Article	IF	CITATIONS
127	How genetically engineered systems are helping to define, and in some cases redefine, the neurobiological basis of sleep and wake. Temperature, 2015, 2, 406-417.	1.7	10
128	Involvement of A13 dopaminergic neurons located in the zona incerta in nociceptive processing: a fiber photometry study. Molecular Brain, 2020, 13, 60.	1.3	10
129	Melaninâ€concentrating hormoneâ€producing neurons in the hypothalamus regulate brown adipose tissue and thus contribute to energy expenditure. Journal of Physiology, 2021, , .	1.3	10
130	Prediction of Density of Stainless Steel ISIJ International, 2000, 40, 987-994.	0.6	9
131	Mechanical allodynia induced by optogenetic sensory nerve excitation activates dopamine signaling and metabolism in medial nucleus accumbens. Neurochemistry International, 2019, 129, 104494.	1.9	9
132	Tensile Strength of Chromium Steel during and after Solidification. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1999, 85, 592-598.	0.1	9
133	Regulation of orexin neurons by the monoaminergic and cholinergic systems. Sleep and Biological Rhythms, 2004, 2, S60-S60.	0.5	8
134	Generation Mechanism of Unevenness of Ultra Low Carbon Steel at Initial Stage of Solidification. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2008, 94, 507-516.	0.1	8
135	Prediction of Solid–Liquid Interfacial Energy of Steel during Solidification and Control of Dendrite Arm Spacing. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2011, 97, 457-466.	0.1	8
136	Preproenkephalin-expressing ventral pallidal neurons control inhibitory avoidance learning. Neurochemistry International, 2019, 126, 11-18.	1.9	8
137	Involvement of MCH-oxytocin neural relay within the hypothalamus in murine nursing behavior. Scientific Reports, 2021, 11, 3348.	1.6	8
138	Prediction of Solid-liquid Interfacial Energy of Steel during Solidification and Control of Dendrite Arm Spacing. ISIJ International, 2012, 52, 2235-2244.	0.6	8
139	Prediction of Tensile Strength and Elongation of High Alloy Steels during Solidification. ISIJ International, 2006, 46, 1040-1046.	0.6	8
140	Quantitation of the neural silencing activity of anion channelrhodopsins in Caenorhabditis elegans and their applicability for long-term illumination. Scientific Reports, 2019, 9, 7863.	1.6	7
141	CRISPR/Cas9-mediated in vivo gene editing reveals that neuronal 5-HT1A receptors in the dorsal raphe nucleus contribute to body temperature regulation in mice. Brain Research, 2019, 1719, 243-252.	1.1	7
142	Bioprinting 3D human cardiac tissue chips using the pin type printer â€~microscopic painting device' and analysis for cardiotoxicity. Biomedical Materials (Bristol), 2021, 16, 025017.	1.7	7
143	Hypothalamic perifornical Urocortin-3 neurons modulate defensive responses to a potential threat stimulus. IScience, 2021, 24, 101908.	1.9	7
144	Activity of putative orexin neurons during cataplexy. Molecular Brain, 2022, 15, 21.	1.3	7

Ακιμικό Υαμανακά

#	Article	IF	CITATIONS
145	Effect of ghrelin on the motor deficit caused by the ablation of nigrostriatal dopaminergic cells or the inhibition of striatal dopamine receptors. Biochemical and Biophysical Research Communications, 2018, 496, 1102-1108.	1.0	6
146	VGLUT2-expressing neurons in the vestibular nuclear complex mediate gravitational stress-induced hypothermia in mice. Communications Biology, 2020, 3, 227.	2.0	6
147	Involvement of supralemniscal nucleus (B9) 5-HT neuronal system in nociceptive processing: a fiber photometry study. Molecular Brain, 2020, 13, 14.	1.3	6
148	Downstream projection of Barrington's nucleus to the spinal cord in mice. Journal of Neurophysiology, 2021, 126, 1959-1977.	0.9	6
149	The development of sleep/wake disruption and cataplexy as hypocretin/orexin neurons degenerate in male vs. female <i>Orexin/tTA; TetO-DTA</i> Mice. Sleep, 2022, 45, .	0.6	6
150	Light-induced silencing of neural activity in Rosa26 knock-in and BAC transgenic mice conditionally expressing the microbial halorhodopsin eNpHR3. Scientific Reports, 2020, 10, 3191.	1.6	5
151	Tumor suppression and improvement in immune systems by specific activation of dopamine D1-receptor-expressing neurons in the nucleus accumbens. Molecular Brain, 2022, 15, 17.	1.3	5
152	Generation of Heterogeneous Nucleus in Carbon Steel during Solidification by Magnesium Vapor Injection. ISIJ International, 2016, 56, 1420-1426.	0.6	4
153	Involvement of A5/A7 noradrenergic neurons and B2 serotonergic neurons in nociceptive processing: a fiber photometry study. Neural Regeneration Research, 2022, 17, 881.	1.6	4
154	Prediction of Density of Chromium Steels by Using the Relation Obtained from Sessile Drop Method and Thermodynamic Phase Calculation Data ISIJ International, 2003, 43, 63-70.	0.6	4
155	Functional Interaction Between GABAergic Neurons in the Ventral Tegmental Area and Serotonergic Neurons in the Dorsal Raphe Nucleus. Frontiers in Neuroscience, 2022, 16, .	1.4	3
156	Input of Orexin/Hypocretin Neurons Revealed by a Genetically Encoded Tracer in Mice. Neuron, 2005, 46, 837.	3.8	2
157	Wheel Slip Suppression Control Method Using Traction Motor Current Information of EMUs Driven by Multiple Traction Motors without Speed Sensors. , 2018, , .		2
158	Functional emergence of a column-like architecture in layer 5 of mouse somatosensory cortex in vivo. Journal of Physiological Sciences, 2019, 69, 65-77.	0.9	2
159	Orbital evolution of a circumbinary planet in a gaseous disk. Earth, Planets and Space, 2019, 71, .	0.9	2
160	Fiberless Optogenetics. Advances in Experimental Medicine and Biology, 2021, 1293, 407-416.	0.8	2
161	Microsegregation in Ni Base Alloy. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1989, 75, 446-453.	0.1	2

162 Neuroscientific Frontline of Optogenetics. , 2015, , 241-248.

#	Article	IF	CITATIONS
163	GI-SleepNet: A Highly Versatile Image-Based Sleep Classification Using a Deep Learning Algorithm. Clocks & Sleep, 2021, 3, 581-597.	0.9	2
164	Conditional Knockout of Bmal1 in Corticotropin-Releasing Factor Neurons Does Not Alter Sleep–Wake Rhythm in Mice. Frontiers in Neuroscience, 2021, 15, 808754.	1.4	2
165	Intensive Cooling Method of Slab Just After Exit of Mold by High Speed Water Film. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1996, 82, 203-207.	0.1	1
166	High Temperature Oxide Scale Morphology and Secondary Cooling Property of Cr Bearing Low Alloy Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2004, 90, 237-243.	0.1	1
167	Heat Transfer during Melting of Titanium Alloy in Vacuum Arc Furnace by Consumable Electrode. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1986, 72, 579-586.	0.1	1
168	Inhibition of orexin-induced wakefulness by pyrilamine, an H1 receptor antagonist. Sleep and Biological Rhythms, 2004, 2, S47-S47.	0.5	0
169	Role of hypothalamic orexin neurons in the regulation of arousal according to energy balance. Sleep and Biological Rhythms, 2004, 2, S57-S57.	0.5	0
170	Alterations in monoaminergic neurons in orexin neuron-ablated mice. Neuroscience Research, 2009, 65, S230.	1.0	0
171	Manipulation of neuronal activity by ectopic expression of melanopsin. Neuroscience Research, 2011, 71, e25.	1.0	0
172	Alterations in noradrenergic neurons in orexin neuron-deficient mice. Neuroscience Research, 2011, 71, e170.	1.0	0
173	1SH-04 Optogenetics reveals function of neural network involved in the regulation of sleep/wakefulness(1SH Retinal proteins and optgenetics,Symposium,The 50th Annual Meeting of the) Tj ETQq1	1 007/8431	4 ngBT /Over
174	Roles of orexin neurons in motivated behaviors in rats. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2020, 93, 2-P-166.	0.0	0
175	001 Exploring the Orexin-tTA/TetO-DTA Mouse as a Model for Pediatric Narcolepsy. Sleep, 2021, 44, A1-A1.	0.6	0
176	Control of Sleep/Wakefulness by Using Optogenetics for Study of Sleep Disease. The Review of Laser Engineering, 2013, 41, 92.	0.0	0
177	Generation Mechanism of Center Cavity in High-Cr Steel Cast. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2014, 100, 610-615.	0.1	0
178	Elucidation of Neuronal Circuitry Involved in the Regulation of Sleep/Wakefulness Using Optogenetics. , 2015, , 249-263.		0
179	Elucidation of Neuronal Circuitry Involved in the Regulation of Sleep/Wakefulness Using Optogenetics. , 2015, , 81-92.		0
180	Generation of Heterogeneous Nucleus in Carbon Steel during Solidification by Magnesium Vapor Injected. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2017, 103, 12-18.	0.1	0

#	Article	IF	CITATIONS
181	Activation of hypothalamic μ-opioidergic system enhances the anti-tumor immune response. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-1-30.	0.0	0
182	Distinct serotonergic systems regulate anxiety, depression, and impulsivity. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, OR6-1.	0.0	0
183	Orexin- and MCH-Neurons Double-Ablated Mice Display Severe Sleep Attacks and Cataplexy. SSRN Electronic Journal, 0, , .	0.4	0
184	Functional identification of neurons regulate sleep and wakefulness. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 3-S24-1.	0.0	0
185	Dynamic changes in orexin activities associated with reward-based motivative behavior. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2022, 95, 1-SS-08.	0.0	0