
M Elena Alañón

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5261862/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced and green extraction of bioactive compounds from Lippia citriodora by tailor-made natural deep eutectic solvents. Food Research International, 2018, 111, 67-76.	2.9	101
2	Choline chloride derivative-based deep eutectic liquids as novel green alternative solvents for extraction of phenolic compounds from olive leaf. Arabian Journal of Chemistry, 2020, 13, 1685-1701.	2.3	101
3	Wine science in the metabolomics era. TrAC - Trends in Analytical Chemistry, 2015, 74, 1-20.	5.8	86
4	A study of the antioxidant capacity of oak wood used in wine ageing and the correlation with polyphenol composition. Food Chemistry, 2011, 128, 997-1002.	4.2	78
5	Bioactive Flavonoids, Antioxidant Behaviour, and Cytoprotective Effects of Dried Grapefruit Peels (<i>Citrus paradisi</i> Macf.). Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-12.	1.9	70
6	Revalorization of winery by-products as source of natural preservatives obtained by means of green extraction techniques. Industrial Crops and Products, 2018, 112, 617-625.	2.5	64
7	Antioxidant capacity and phenolic composition of different woods used in cooperage. Food Chemistry, 2011, 129, 1584-1590.	4.2	62
8	Comparison of extraction methods for volatile compounds of Muscat grape juice. Talanta, 2009, 79, 871-876.	2.9	57
9	Floral origin markers for authenticating Lavandin honey (Lavandula angustifolia x latifolia). Discrimination from Lavender honey (Lavandula latifolia). Food Control, 2014, 37, 362-370.	2.8	56
10	Revalorization of bioactive compounds from tropical fruit by-products and industrial applications by means of sustainable approaches. Food Research International, 2020, 138, 109786.	2.9	47
11	Assessment of flavanol stereoisomers and caffeine and theobromine content in commercial chocolates. Food Chemistry, 2016, 208, 177-184.	4.2	44
12	Antiplatelet Activity of Natural Bioactive Extracts from Mango (Mangifera Indica L.) and its By-Products. Antioxidants, 2019, 8, 517.	2.2	41
13	Volatile compounds as markers of ageing in Tempranillo red wines from La Mancha D.O. stored in oak wood barrels. Journal of Chromatography A, 2011, 1218, 4910-4917.	1.8	34
14	A novel sustainable approach for the extraction of value-added compounds from Hibiscus sabdariffa L. calyces by natural deep eutectic solvents. Food Research International, 2020, 137, 109646.	2.9	34
15	Enological potential of chestnut wood for aging Tempranillo wines Part II: Phenolic compounds and chromatic characteristics. Food Research International, 2013, 51, 536-543.	2.9	33
16	Extraction of natural flavorings with antioxidant capacity from cooperage by-products by green extraction procedure with subcritical fluids. Industrial Crops and Products, 2017, 103, 222-232.	2.5	32
17	Factors Affecting the Absorption, Metabolism, and Excretion of Cocoa Flavanols in Humans. Journal of Agricultural and Food Chemistry, 2015, 63, 7615-7623.	2.4	31
18	Oak wood extracts as natural antioxidants to increase shelf life of raw pork patties in modified atmosphere packaging. Food Research International, 2018, 111, 524-533.	2.9	29

M Elena Alañón

#	Article	IF	CITATIONS
19	Implementation of subcritical water extraction with natural deep eutectic solvents for sustainable extraction of phenolic compounds from winemaking by-products. Food Research International, 2020, 137, 109728.	2.9	29
20	Natural extracts from grape seed and stem by-products in combination with colloidal silver as alternative preservatives to SO2 for white wines: Effects on chemical composition and sensorial properties. Food Research International, 2019, 125, 108594.	2.9	25
21	HPLC-DAD-Q-ToF-MS profiling of phenolic compounds from mango (Mangifera indica L.) seed kernel of different cultivars and maturation stages as a preliminary approach to determine functional and nutraceutical value. Food Chemistry, 2021, 337, 127764.	4.2	25
22	Changes in the volatile fractions and sensory properties of heather honey during storage under different temperatures. European Food Research and Technology, 2012, 235, 185-193.	1.6	23
23	Evolution of bioactive compounds of three mango cultivars (Mangifera indica L.) at different maturation stages analyzed by HPLC-DAD-q-TOF-MS. Food Research International, 2019, 125, 108526.	2.9	23
24	Mango byâ€products as a natural source of valuable odorâ€active compounds. Journal of the Science of Food and Agriculture, 2020, 100, 4688-4695.	1.7	23
25	Modifiers based on natural deep eutectic mixtures to enhance anthocyanins isolation from grape pomace by pressurized hot water extraction. LWT - Food Science and Technology, 2021, 149, 111889.	2.5	23
26	Effect of Power Ultrasound Treatment on Free and Glycosidically-Bound Volatile Compounds and the Sensorial Profile of Red Wines. Molecules, 2021, 26, 1193.	1.7	22
27	Monosaccharide anhydrides, new markers of toasted oak wood used for ageing wines and distillates. Food Chemistry, 2010, 119, 505-512.	4.2	21
28	Influence of geographical location, site and silvicultural parameters, on volatile composition of Quercus pyrenaica Willd. wood used in wine aging. Forest Ecology and Management, 2011, 262, 124-130.	1.4	21
29	Enological potential of chestnut wood for aging Tempranillo wines part I: Volatile compounds and sensorial properties. Food Research International, 2013, 51, 325-334.	2.9	21
30	Freeze-dried grape skins by-products to enhance the quality of white wines from neutral grape varieties. Food Research International, 2015, 69, 97-105.	2.9	21
31	Effect of Wine Lees as Alternative Antioxidants on Physicochemical and Sensorial Composition of Deer Burgers Stored during Chilled Storage. Antioxidants, 2020, 9, 687.	2.2	20
32	Analysis of cyclitols in different Quercus species by gas chromatography-mass spectrometry. Journal of the Science of Food and Agriculture, 2010, 90, 1735-1738.	1.7	19
33	Aromatic potential of Castanea sativa Mill. compared to Quercus species to be used in cooperage. Food Chemistry, 2012, 130, 875-881.	4.2	19
34	Extraction of volatile and semiâ€volatile components from oak wood used for aging wine by miniaturised pressurised liquid technique. International Journal of Food Science and Technology, 2009, 44, 1825-1835.	1.3	18
35	Comprehensive research on mango by-products applications in food industry. Trends in Food Science and Technology, 2021, 118, 179-188.	7.8	18
36	Optimisation of pressurised liquid extraction for the determination of monosaccharides and polyalcohols in woods used in wine aging. Journal of the Science of Food and Agriculture, 2009, 89, 2558-2564.	1.7	17

M Elena Alañón

#	Article	IF	CITATIONS
37	Evaluation of Portuguese and Spanish Quercus pyrenaica and Castanea sativa species used in cooperage as natural source of phenolic compounds. European Food Research and Technology, 2013, 237, 367-375.	1.6	17
38	Cyclic Polyalcohols: Fingerprints To Identify the Botanical Origin of Natural Woods Used in Wine Aging. Journal of Agricultural and Food Chemistry, 2011, 59, 1269-1274.	2.4	15
39	Antimicrobial and antioxidant activity of pressurized liquid extracts from oenological woods. Food Control, 2015, 50, 581-588.	2.8	15
40	Fingerprints of acacia aging treatments by barrels or chips based on volatile profile, sensorial properties, and multivariate analysis. Journal of the Science of Food and Agriculture, 2018, 98, 5795-5806.	1.7	15
41	Acute study of dose-dependent effects of (â^')-epicatechin on vascular function in healthy male volunteers: A randomized controlled trial. Clinical Nutrition, 2020, 39, 746-754.	2.3	15
42	Analysis of volatile composition of toasted and nonâ€toasted commercial chips by GCâ€MS after an accelerated solvent extraction method. International Journal of Food Science and Technology, 2012, 47, 816-826.	1.3	14
43	Evaluation of Oak Chips Treatment on Volatile Composition and Sensory Characteristics of Merlot Wine. Journal of Food Quality, 2013, 36, 1-9.	1.4	14
44	Natural extracts from fresh and ovenâ€dried winemaking byâ€products as valuable source of antioxidant compounds. Food Science and Nutrition, 2018, 6, 1564-1574.	1.5	14
45	Pressurized GRAS solvents for the green extraction of phenolic compounds from hibiscus sabdariffa calyces. Food Research International, 2020, 137, 109466.	2.9	14
46	Profiling phenolic compounds in underutilized mango peel by-products from cultivars grown in Spanish subtropical climate over maturation course. Food Research International, 2021, 140, 109852.	2.9	13
47	Effect of Microwave Maceration and SO2 Free Vinification on Volatile Composition of Red Wines. Foods, 2021, 10, 1164.	1.9	13
48	Evaluation of the Storage Conditions and Type of Cork Stopper on the Quality of Bottled White Wines. Molecules, 2021, 26, 232.	1.7	11
49	New Strategies to Improve Sensorial Quality of White Wines by Wood Contact. Beverages, 2018, 4, 91.	1.3	9
50	Oenological potential of extracts from winery and cooperage by-products in combination with colloidal silver as natural substitutes to sulphur dioxide. Food Chemistry, 2019, 276, 485-493.	4.2	9
51	Effect of storage conditions on volatile composition of dried rosemary (<i>Rosmarinus) Tj ETQq1 1 0.784314 rg</i>	gBT /Qverlo 1.2	ock,10 Tf 50
52	Effect of winery by-product extracts on oxidative stability, volatile organic compounds and aroma profile of cooked pork model systems during chilled storage. LWT - Food Science and Technology, 2021, 152, 112260.	2.5	7
53	By-products of pyro-bituminous shale as amendments in Brazilian vineyards: Influence on polyphenolic composition of Cabernet Sauvignon wines. Food Research International, 2016, 81, 122-132.	2.9	5
54	Isolation of natural flavoring compounds from cooperage woods by pressurized hot water extraction (PHWE). Holzforschung, 2019, 73, 295-303.	0.9	5

#	Article	IF	CITATIONS
55	Revalorisation of Agro-Industrial Wastes into High Value-Added Products. Advances in Science, Technology and Innovation, 2021, , 229-245.	0.2	5
56	Corky offâ€flavor compounds in cork planks at different storage times before processing. Influence on the quality of the final stoppers. Journal of the Science of Food and Agriculture, 2021, 101, 4735-4742.	1.7	5
57	Inactive dry yeast to improve the oxidative stability of Spanish dry-fermented sausage "salchichón― LWT - Food Science and Technology, 2021, 146, 111385.	2.5	5
58	Study of phenolic potential of seasoned and toasted Portuguese wood species (Quercus) Tj ETQq0 0 (0 rgBT /O∖ 9.7	verlock 10 Tf !
59	Alternative amendment for vineyards from by-products of pyro-bituminous shale: Effect on wine amino acids and biogenic amines. Food Research International, 2017, 101, 239-248.	2.9	2
60	The different occurrence conditions ofQuercus roburL. andQuercus petraea(Mattuschka) Liebl. on current habitat in Galicia, NW Iberian Peninsula. Scandinavian Journal of Forest Research, 2015, 30, 122-134.	0.5	1

61	Recent advances and new challenges of green solvents for the extraction of phenolic compounds from tropical fruits. , 2021, , 271-287.		1
62	Quality Assurance of commercial guacamoles preserved by high pressure processing versus conventional thermal processing. Food Control, 2022, 135, 108791.	2.8	1