Claudia Kuntner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5261787/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The ClearPETâ,,¢ project: development of a 2nd generation high-performance small animal PET scanner. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537, 307-311.	0.7	121
2	Pgp-Mediated Interaction Between (R)-[11C]Verapamil and Tariquidar at the Human Blood–Brain Barrier: A Comparison With Rat Data. Clinical Pharmacology and Therapeutics, 2012, 91, 227-233.	2.3	108
3	Development of a ¹⁸ F‣abeled Tetrazine with Favorable Pharmacokinetics for Bioorthogonal PET Imaging. Angewandte Chemie - International Edition, 2014, 53, 9655-9659.	7.2	108
4	Tariquidar-Induced P-Glycoprotein Inhibition at the Rat Blood–Brain Barrier Studied with (<i>R</i>)- ¹¹ C-Verapamil and PET. Journal of Nuclear Medicine, 2008, 49, 1328-1335.	2.8	104
5	Dose-response assessment of tariquidar and elacridar and regional quantification of P-glycoprotein inhibition at the rat blood-brain barrier using (R)-[11C]verapamil PET. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 942-953.	3.3	102
6	Limitations of Small Animal PET Imaging with [18F]FDDNP and FDG for Quantitative Studies in a Transgenic Mouse Model of Alzheimer's Disease. Molecular Imaging and Biology, 2009, 11, 236-240.	1.3	87
7	A new fast and fully automated software based algorithm for extracting respiratory signal from raw PET data and its comparison to other methods. Medical Physics, 2010, 37, 5550-5559.	1.6	79
8	Tariquidar and Elacridar Are Dose-Dependently Transported by P-Glycoprotein and Bcrp at the Blood-Brain Barrier: A Small-Animal Positron Emission Tomography and In Vitro Study. Drug Metabolism and Disposition, 2013, 41, 754-762.	1.7	79
9	Synthesis and in vivo evaluation of [11C]tariquidar, a positron emission tomography radiotracer based on a third-generation P-glycoprotein inhibitor. Bioorganic and Medicinal Chemistry, 2010, 18, 5489-5497.	1.4	73
10	Design, Synthesis, and Evaluation of a Low-Molecular-Weight ¹¹ C-Labeled Tetrazine for Pretargeted PET Imaging Applying Bioorthogonal in Vivo Click Chemistry. Bioconjugate Chemistry, 2016, 27, 1707-1712.	1.8	73
11	Synthesis and Small-Animal Positron Emission Tomography Evaluation of [11C]-Elacridar As a Radiotracer to Assess the Distribution of P-Glycoprotein at the Bloodâ^'Brain Barrier. Journal of Medicinal Chemistry, 2009, 52, 6073-6082.	2.9	71
12	(R)-[11C]verapamil is selectively transported by murine and human P-glycoprotein at the blood–brain barrier, and not by MRP1 and BCRP. Nuclear Medicine and Biology, 2013, 40, 873-878.	0.3	67
13	A Novel Positron Emission Tomography Imaging Protocol Identifies Seizure-Induced Regional Overactivity of P-Glycoprotein at the Blood-Brain Barrier. Journal of Neuroscience, 2011, 31, 8803-8811.	1.7	58
14	Quantitative preclinical PET imaging: opportunities and challenges. Frontiers in Physics, 2014, 2, .	1.0	55
15	Breast Cancer Resistance Protein and P-Glycoprotein Influence In Vivo Disposition of ¹¹ C-Erlotinib. Journal of Nuclear Medicine, 2015, 56, 1930-1936.	2.8	52
16	A Novel PET Protocol for Visualization of Breast Cancer Resistance Protein Function at the Blood–Brain Barrier. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 2002-2011.	2.4	46
17	FDG uptake is a surrogate marker for defining the optimal biological dose of the mTOR inhibitor everolimus in vivo. British Journal of Cancer, 2009, 100, 1739-1745.	2.9	40
18	Factors Governing P-Glycoprotein-Mediated Drug–Drug Interactions at the Blood–Brain Barrier Measured with Positron Emission Tomography. Molecular Pharmaceutics, 2015, 12, 3214-3225.	2.3	39

#	Article	IF	CITATIONS
19	Intrinsic energy resolution and light output of the Lu0.7Y0.3AP:Ce scintillator. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 493, 131-136.	0.7	38
20	Pre vivo, ex vivo and in vivo evaluations of [68Ga]-EDTMP. Nuclear Medicine and Biology, 2007, 34, 391-397.	0.3	37
21	Scintillation properties and mechanism in Lu0.8Y0.2AlO3:Ce. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486, 176-180.	0.7	36
22	Multimodality Rodent Imaging Chambers for Use Under Barrier Conditions with Gas Anesthesia. Molecular Imaging and Biology, 2009, 11, 100-106.	1.3	36
23	Gastric Cancer Growth Control by BEZ235 <i>In Vivo</i> Does Not Correlate with PI3K/mTOR Target Inhibition but with [18F]FLT Uptake. Clinical Cancer Research, 2011, 17, 5322-5332.	3.2	33
24	The ClearPET project. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 527, 171-174.	0.7	31
25	Radiosynthesis and in vivo evaluation of 1-[18F]fluoroelacridar as a positron emission tomography tracer for P-glycoprotein and breast cancer resistance protein. Bioorganic and Medicinal Chemistry, 2011, 19, 2190-2198.	1.4	30
26	Advances in the scintillation performance of LuYAP:Ce single crystals. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537, 295-301.	0.7	28
27	Development of an optimized LSO/LuYAP phoswich detector head for the Lausanne ClearPET demonstrator. IEEE Transactions on Nuclear Science, 2006, 53, 25-29.	1.2	28
28	Guidance for Efficient Small Animal Imaging Quality Control. Molecular Imaging and Biology, 2017, 19, 485-498.	1.3	24
29	A comparative small-animal PET evaluation of [11C]tariquidar, [11C]elacridar and (R)-[11C]verapamil for detection of P-glycoprotein-expressing murine breast cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39, 149-159.	3.3	23
30	Guidance for Methods Descriptions Used in Preclinical Imaging Papers. Molecular Imaging, 2013, 12, 7290.2013.00055.	0.7	23
31	Development and performance test of an online blood sampling system for determination of the arterial input function in rats. EJNMMI Physics, 2015, 2, 1.	1.3	22
32	Preclinical in vitro & in vivo evaluation of [11C]SNAP-7941 – the first PET tracer for the melanin concentrating hormone receptor 1. Nuclear Medicine and Biology, 2013, 40, 919-925.	0.3	20
33	Reproducibility and Comparability of Preclinical PET Imaging Data: A Multicenter Small-Animal PET Study. Journal of Nuclear Medicine, 2019, 60, 1483-1491.	2.8	20
34	Scintillation properties of mixed LuYAP crystals in view of their use in a small animal PET scanner in phoswich configuration. IEEE Transactions on Nuclear Science, 2003, 50, 1477-1482.	1.2	19
35	Validation of PET-SORTEO Monte Carlo simulations for the geometries of the MicroPET R4 and Focus 220 PET scanners. Physics in Medicine and Biology, 2007, 52, 4845-4862.	1.6	19
36	Radiosynthesis and Assessment of Ocular Pharmacokinetics of 124I-Labeled Chitosan in Rabbits Using Small-Animal PET. Molecular Imaging and Biology, 2011, 13, 222-226.	1.3	19

#	Article	IF	CITATIONS
37	Development of Fluorine-18 Labeled Metabolically Activated Tracers for Imaging of Drug Efflux Transporters with Positron Emission Tomography. Journal of Medicinal Chemistry, 2015, 58, 6058-6080.	2.9	18
38	Amyloid PET and MRI in Alzheimers Disease and Mild Cognitive Impairment. Current Alzheimer Research, 2009, 6, 312-319.	0.7	17
39	Synthesis and preclinical evaluation of the radiolabeled P-glycoprotein inhibitor [11C]MC113. Nuclear Medicine and Biology, 2012, 39, 1219-1225.	0.3	17
40	Pharmacokinetic modeling of P-glycoprotein function at the rat and human blood–brain barriers studied with (R)-[11C]verapamil positron emission tomography. EJNMMI Research, 2012, 2, 58.	1.1	16
41	Kinetic modeling in pre-clinical positron emission tomography. Zeitschrift Fur Medizinische Physik, 2014, 24, 274-285.	0.6	16
42	Assessment of cerebral P-glycoprotein expression and function with PET by combined [11C]inhibitor and [11C]substrate scans in rats. Nuclear Medicine and Biology, 2013, 40, 755-763.	0.3	15
43	Influence of Multidrug Resistance-Associated Proteins on the Excretion of the ABCC1 Imaging Probe 6-Bromo-7-[11C]Methylpurine in Mice. Molecular Imaging and Biology, 2019, 21, 306-316.	1.3	15
44	Synthesis of a [¹⁸ F]fluorobenzothiazole as potential amyloid imaging agent. Journal of Labelled Compounds and Radiopharmaceuticals, 2008, 51, 137-145.	0.5	14
45	On the applicability of [18F]FBPA to predict L-BPA concentration after amino acid preloading in HuH-7 liver tumor model and the implication for liver boron neutron capture therapy. Nuclear Medicine and Biology, 2017, 44, 83-89.	0.3	14
46	Measurement of cerebral ABCC1 transport activity in wild-type and APP/PS1-21 mice with positron emission tomography. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 954-965.	2.4	14
47	Synthesis and preclinical characterization of 1-(6′-deoxy-6′-[18 F]fluoro-β- d) Tj ETQq1 1 0.784314 rgBT / assess tumor hypoxia. Bioorganic and Medicinal Chemistry, 2016, 24, 5326-5339.	Overlock 1 1.4	0 Tf 50 347 T 13
48	[18F]Fluoroalkyl azides for rapid radiolabeling and (Re)investigation of their potential towards in vivo click chemistry. Organic and Biomolecular Chemistry, 2017, 15, 5976-5982.	1.5	13
49	Synthesis and in vivo evaluation of the putative breast cancer resistance protein inhibitor [11C]methyl 4-((4-(2-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl)phenyl)amino-carbonyl)-2-(quinoline-2-carbonyl Nuclear Medicine and Biology, 2010, 37, 637-644.	ımi o c)ben	zoate.
50	The antiepileptic drug mephobarbital is not transported by P-glycoprotein or multidrug resistance protein 1 at the blood–brain barrier: A positron emission tomography study. Epilepsy Research, 2012, 100, 93-103.	0.8	12
51	Preloading with L-BPA, L-tyrosine and L-DOPA enhances the uptake of [18F]FBPA in human and mouse tumour cell lines. Applied Radiation and Isotopes, 2016, 118, 67-72.	0.7	12
52	Vitamin K3 chloro derivative (VKT-2) inhibits HDAC6, activates autophagy and apoptosis, and inhibits aggresome formation in hepatocellular carcinoma cells. Biochemical Pharmacology, 2020, 180, 114176.	2.0	11
53	Real-time data-driven motion correction in PET. EJNMMI Physics, 2019, 6, 3.	1.3	10
54	Interaction of HM30181 with P-glycoprotein at the murine blood–brain barrier assessed with positron emission tomography. European Journal of Pharmacology, 2012, 696, 18-27.	1.7	9

#	Article	IF	CITATIONS
55	Automated electrophilic radiosynthesis of [18F]FBPA using a modified nucleophilic GE TRACERlab FXFDG. Applied Radiation and Isotopes, 2015, 104, 124-127.	0.7	9
56	Characterization of an APP/tau rat model of Alzheimer's disease by positron emission tomography and immunofluorescent labeling. Alzheimer's Research and Therapy, 2021, 13, 175.	3.0	8
57	Assessing the Functional Redundancy between P-gp and BCRP in Controlling the Brain Distribution and Biliary Excretion of Dual Substrates with PET Imaging in Mice. Pharmaceutics, 2021, 13, 1286.	2.0	7
58	[11 C]Erlotinib PET cannot detect acquired erlotinib resistance in NSCLC tumor xenografts in mice. Nuclear Medicine and Biology, 2017, 52, 7-15.	0.3	6
59	18F, 11C and 68Ga in small animal PET imaging. Nuklearmedizin - NuclearMedicine, 2013, 52, 250-261.	0.3	5
60	Radiosynthesis of [124I]Iodometomidate and Biological Evaluation Using Small-Animal PET. Molecular Imaging and Biology, 2014, 16, 317-321.	1.3	5
61	[18F]FE@SUPPY: a suitable PET tracer for the adenosine A3 receptor? An in vivo study in rodents. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 741-749.	3.3	5
62	Automated radiosynthesis of [18F]ciprofloxacin. Applied Radiation and Isotopes, 2015, 99, 133-137.	0.7	5
63	Influence of 24-Nor-Ursodeoxycholic Acid on Hepatic Disposition of [18F]Ciprofloxacin, a Positron Emission Tomography Study in Mice. Journal of Pharmaceutical Sciences, 2016, 105, 106-112.	1.6	5
64	Plasma pharmacokinetic and metabolism of [18F]THK-5317 are dependent on sex. Nuclear Medicine and Biology, 2020, 84-85, 28-32.	0.3	5
65	Medical Physics and Imaging–A Timely Perspective. Frontiers in Physics, 2021, 9, .	1.0	5
66	Influence of breast cancer resistance protein and P-glycoprotein on tissue distribution and excretion of Ko143 assessed with PET imaging in mice. European Journal of Pharmaceutical Sciences, 2018, 115, 212-222.	1.9	4
67	Development of new mixed LuYAP:Ce crystals for application in a small animal PET scanner with DOI capability. , 0, , .		3
68	Evaluation of [11C]elacridar and [11C]tariquidar in transporter knockout mice using small-animal PET. NeuroImage, 2010, 52, S25.	2.1	3
69	[18F]FDG is not transported by P-glycoprotein and breast cancer resistance protein at the rodent blood–brain barrier. Nuclear Medicine and Biology, 2015, 42, 585-589.	0.3	2
70	Use of PET Imaging to Assess the Efficacy of Thiethylperazine to Stimulate Cerebral MRP1 Transport Activity in Wild-Type and APP/PS1-21 Mice. International Journal of Molecular Sciences, 2022, 23, 6514.	1.8	2
71	BEZ235 impairs gastric cancer growth by inhibition of PI3K/mTOR in vitro and in vivo. BMC Pharmacology, 2010, 10, .	0.4	1
72	Inhibition of breast cancer resistance protein at the murine blood-brain barrier by Ko143 studied with [11C]tariquidar and PET. BMC Pharmacology, 2011, 11, .	0.4	1

#	Article	IF	CITATIONS
73	In vivo dose finding of tariquidar using (R)-[11C]verapamil μPET. BMC Pharmacology, 2007, 7, .	0.4	Ο
74	P-Glycoprotein inhibition at the blood-brain barrier visualized with (R)-[11C]verapamil μPET. BMC Pharmacology, 2007, 7, .	0.4	0
75	Small-animal PET evaluation of [11C]MC113 as a PET tracer for P-glycoprotein. BMC Pharmacology, 2010, 10, .	0.4	0
76	Assessing cerebral P-glycoprotein expression and function with PET by combined [11C]inhibitor [11C]substrate scans. NeuroImage, 2010, 52, S116.	2.1	0
77	32nd International Austrian Winter Symposium. EJNMMI Research, 2016, 6, 32.	1.1	0
78	Editorial: Status Go for Preclinical Imaging. Frontiers in Physics, 2020, 8, .	1.0	0
79	Impact of Attenuation Correction on Quantification Accuracy in Preclinical Whole-Body PET Images. Frontiers in Physics, 2020, 8, .	1.0	Ο