
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5261685/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Docking in Metal-Organic Frameworks. Science, 2009, 325, 855-859.	6.0	360
2	Enhanced Activity of Enzymes Encapsulated in Hydrophilic Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 2348-2355.	6.6	351
3	Metal–Organic Frameworks as Cathode Materials for Li–O ₂ Batteries. Advanced Materials, 2014, 26, 3258-3262.	11.1	278
4	Nanoporous Carbohydrate Metal–Organic Frameworks. Journal of the American Chemical Society, 2012, 134, 406-417.	6.6	271
5	A Metalâ^'Organic Framework with Covalently Bound Organometallic Complexes. Journal of the American Chemical Society, 2010, 132, 9262-9264.	6.6	206
6	Reversible Redox Activity in Multicomponent Metal–Organic Frameworks Constructed from Trinuclear Copper Pyrazolate Building Blocks. Journal of the American Chemical Society, 2017, 139, 7998-8007.	6.6	158
7	Ordered Vacancies and Their Chemistry in Metal–Organic Frameworks. Journal of the American Chemical Society, 2014, 136, 14465-14471.	6.6	156
8	Anisotropic reticular chemistry. Nature Reviews Materials, 2020, 5, 764-779.	23.3	149
9	Control of Structure Topology and Spatial Distribution of Biomacromolecules in Protein@ZIF-8 Biocomposites. Chemistry of Materials, 2018, 30, 1069-1077.	3.2	146
10	Standard Practices of Reticular Chemistry. ACS Central Science, 2020, 6, 1255-1273.	5.3	142
11	Metal–Organic Frameworks Incorporating Copperâ€Complexed Rotaxanes. Angewandte Chemie - International Edition, 2012, 51, 2160-2163.	7.2	105
12	A Catenated Strut in a Catenated Metal–Organic Framework. Angewandte Chemie - International Edition, 2010, 49, 6751-6755.	7.2	103
13	Epitaxial Growth and Integration of Insulating Metal–Organic Frameworks in Electrochemistry. Journal of the American Chemical Society, 2019, 141, 11322-11327.	6.6	98
14	A metal–organic framework replete with ordered donor–acceptor catenanes. Chemical Communications, 2010, 46, 380-382.	2.2	94
15	Rigidâ€5trut ontaining Crown Ethers and [2]Catenanes for Incorporation into Metal–Organic Frameworks. Chemistry - A European Journal, 2009, 15, 13356-13380.	1.7	88
16	Heterogeneity within a Mesoporous Metal–Organic Framework with Three Distinct Metal-Containing Building Units. Journal of the American Chemical Society, 2015, 137, 13456-13459.	6.6	88
17	A Rational Self-Sacrificing Template Route toβ-Bi2O3 Nanotube Arrays. European Journal of Inorganic Chemistry, 2004, 2004, 1785-1787.	1.0	85
18	Metal–organic frameworks with designed chiral recognition sites. Chemical Communications, 2010, 46, 4911.	2.2	82

#	Article	IF	CITATIONS
19	Metal–organic frameworks with multicomponents in order. Coordination Chemistry Reviews, 2019, 388, 107-125.	9.5	82
20	Reticular Chemistry and Metal-Organic Frameworks for Clean Energy. MRS Bulletin, 2009, 34, 682-690.	1.7	75
21	Downsizing metal–organic frameworks with distinct morphologies as cathode materials for high-capacity Li–O ₂ batteries. Materials Chemistry Frontiers, 2017, 1, 1324-1330.	3.2	73
22	A triptycene-based porous hydrogen-bonded organic framework for guest incorporation with tailored fitting. Chemical Communications, 2017, 53, 3677-3680.	2.2	69
23	Solvothermal synthesis of Sb2S3 nanowires on a large scale. Journal of Crystal Growth, 2003, 258, 106-112.	0.7	66
24	An Imineâ€Linked Metal–Organic Framework as a Reactive Oxygen Species Generator. Angewandte Chemie - International Edition, 2021, 60, 2534-2540.	7.2	63
25	Ultra-fast single-crystal polymerization of large-sized covalent organic frameworks. Nature Communications, 2021, 12, 5077.	5.8	63
26	Enhanced performance in gas adsorption and Li ion batteries by docking Li ⁺ in a crown ether-based metal–organic framework. Chemical Communications, 2016, 52, 3003-3006.	2.2	62
27	Solvothermal growth of Sb2S3 microcrystallites with novel morphologies. Journal of Crystal Growth, 2004, 262, 375-382.	0.7	59
28	Harnessing Bottomâ€Up Selfâ€Assembly To Position Five Distinct Components in an Ordered Porous Framework. Angewandte Chemie - International Edition, 2019, 58, 5348-5353.	7.2	48
29	A Room-Temperature Route to Bismuth Nanotube Arrays. European Journal of Inorganic Chemistry, 2003, 2003, 3699-3702.	1.0	47
30	A rational complexing-reduction route to antimony nanotubes. New Journal of Chemistry, 2003, 27, 1161.	1.4	38
31	Defect engineering of Mn-based MOFs with rod-shaped building units by organic linker fragmentation. Inorganica Chimica Acta, 2017, 460, 93-98.	1.2	38
32	Structure Transformation of a Luminescent Pillared-Layer Metal–Organic Framework Caused by Point Defects Accumulation. Chemistry of Materials, 2018, 30, 5478-5484.	3.2	34
33	Evolution of a Metalâ€Organic Framework into a BrÃ,nsted Acid Catalyst for Glycerol Dehydration to Acrolein. ChemSusChem, 2020, 13, 5073-5079.	3.6	31
34	Solvothermal synthesis and characterization of coordination polymers of cobalt(II) and zinc(II) with succinic acid. Transition Metal Chemistry, 2012, 37, 257-263.	0.7	28
35	Distinct interpenetrated metal–organic frameworks constructed from crown ether-based strut analogue. CrystEngComm, 2013, 15, 841-844.	1.3	20
36	One-step Route to Single-crystal γ-Mn3O4Nanorods in Alcohol–Water System. Chemistry Letters, 2004, 33, 804-805.	0.7	19

#	Article	IF	CITATIONS
37	Metal–organic frameworks constructed from mixed infinite inorganic units and adenine. CrystEngComm, 2014, 16, 3082.	1.3	18
38	Distinct Packings of Supramolecular Building Blocks in Metal–Organic Frameworks Based on Imidazoledicarboxylic Acid. Inorganic Chemistry, 2015, 54, 9678-9680.	1.9	16
39	Synthesis, structure and luminescence properties of metal-organic frameworks based on benzo-bis(imidazole). Science China Chemistry, 2014, 57, 135-140.	4.2	15
40	Functionality proportion and corresponding stability study of multivariate metal-organic frameworks. Chinese Chemical Letters, 2018, 29, 837-841.	4.8	15
41	Solvothermal synthesis of antimony nanowire bundles, tube-groove-like nanostructures and dendrites. Journal of Crystal Growth, 2004, 261, 485-489.	0.7	14
42	Photochemical cycloaddition and temperature-dependent breathing in pillared-layer metal–organic frameworks. Science Bulletin, 2019, 64, 1881-1889.	4.3	13
43	Mnâ€Based Two Dimensional Metalâ€Organic Framework Material from Benzimidazoleâ€5,6â€dicarboxylic Acid. Chinese Journal of Chemistry, 2016, 34, 233-238.	2.6	12
44	New linker installation in metal–organic frameworks. Dalton Transactions, 2019, 48, 12000-12008.	1.6	11
45	Harnessing Bottomâ€Up Selfâ€Assembly To Position Five Distinct Components in an Ordered Porous Framework. Angewandte Chemie, 2019, 131, 5402-5407.	1.6	10
46	Construction of mixed carboxylate and pyrogallate building units for luminescent metal–organic frameworks. Chinese Chemical Letters, 2020, 31, 813-817.	4.8	10
47	Snapshots of Postsynthetic Modification in a Layered Metal–Organic Framework: Isometric Linker Exchange and Adaptive Linker Installation. Inorganic Chemistry, 2021, 60, 11756-11763.	1.9	10
48	Near achiral metal–organic frameworks from conformationally flexible homochiral ligands resulted by the preferential formation of pseudo-inversion center in asymmetric unit. CrystEngComm, 2011, 13, 1277-1279.	1.3	9
49	Reversible and selective solvent adsorption in layered metal–organic frameworks by coordination control. Journal of Colloid and Interface Science, 2014, 413, 175-182.	5.0	9
50	Vacancies in Metalâ^'Organic Frameworks: Formation, Arrangement, and Functions. Small Structures, 2022, 3, .	6.9	9
51	Encapsulation of polyoxometalates within layered metal–organic frameworks with topological and pore control. CrystEngComm, 2013, 15, 9340.	1.3	8
52	A Triptyceneâ€Based Porous Organic Polymer that Exhibited High Hydrogen and Carbon Dioxide Storage Capacities and Excellent CO ₂ /N ₂ Selectivity. Chinese Journal of Chemistry, 2015, 33, 539-544.	2.6	8
53	Reticular chemistry at the atomic, molecular, and framework scales. Nano Research, 2021, 14, 335-337.	5.8	8
54	An Imineâ€Linked Metal–Organic Framework as a Reactive Oxygen Species Generator. Angewandte Chemie, 2021, 133, 2564-2570.	1.6	8

#	Article	IF	CITATIONS
55	Chiral porous metal–organic frameworks from chiral building units with different metrics. CrystEngComm, 2013, 15, 10161.	1.3	7
56	Interface construction in microporous metal–organic frameworks from luminescent terbium-based building blocks. Journal of Colloid and Interface Science, 2019, 552, 372-377.	5.0	7
57	Precise CO ₂ Reduction for Bilayer Graphene. ACS Central Science, 2022, 8, 394-401.	5.3	6
58	Vacancies in Metalâ^'Organic Frameworks: Formation, Arrangement, and Functions. Small Structures, 2022, 3, .	6.9	5
59	Field Effect Transistors Based on In Situ Fabricated Graphene Scaffold–ZrO ₂ Nanofilms. Advanced Electronic Materials, 2018, 4, 1700424.	2.6	4
60	Cycloparaphenylene and their radicals anchored to a metalâ^'organic framework. Materials Today Chemistry, 2022, 25, 100973.	1.7	4
61	Loop-containing One-dimensional Metal-Organic Frameworks from Flexible Betaine Linkers and Zinc Salts by Controlled Synthesis. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2013, 68, 797-803.	0.3	1
62	Transfer-Free Fabrication of Graphene Scaffolds on High-k Dielectrics from Metal–Organic Oligomers. ACS Applied Materials & Interfaces, 2016, 8, 25469-25475.	4.0	1
63	Synthesis of the Bi-functionalized Pillar[5]arene. Chinese Journal of Organic Chemistry, 2016, 36, 2130.	0.6	1
64	A Rational Self-Sacrificing Template Route to β-Bi2O3 Nanotube Arrays ChemInform, 2004, 35, no.	0.1	0
65	Metal–organic frameworks with multi-components in order. Acta Crystallographica Section A: Foundations and Advances. 2017. 73. C842-C842.	0.0	0