Xiang-Liang Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5261397/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3766-3771.	7.1	458
2	Ischemic Preconditioning Induces Selective Translocation of Protein Kinase C Isoforms ε and η in the Heart of Conscious Rabbits Without Subcellular Redistribution of Total Protein Kinase C Activity. Circulation Research, 1997, 81, 404-414.	4.5	423
3	Intracoronary Administration of Cardiac Progenitor Cells Alleviates Left Ventricular Dysfunction in Rats With a 30-Day-Old Infarction. Circulation, 2010, 121, 293-305.	1.6	359
4	Nuclear Factor-κB Plays an Essential Role in the Late Phase of Ischemic Preconditioning in Conscious Rabbits. Circulation Research, 1999, 84, 1095-1109.	4.5	297
5	The Protective Effect of Late Preconditioning Against Myocardial Stunning in Conscious Rabbits Is Mediated by Nitric Oxide Synthase. Circulation Research, 1997, 81, 1094-1107.	4.5	272
6	Isoform-Selective Activation of Protein Kinase C by Nitric Oxide in the Heart of Conscious Rabbits. Circulation Research, 1999, 84, 587-604.	4.5	249
7	Nitric Oxide Synthase Is the Mediator of Late Preconditioning Against Myocardial Infarction in Conscious Rabbits. Circulation, 1998, 98, 441-449.	1.6	240
8	Nitric Oxide Donors Induce Late Preconditioning Against Myocardial Stunning and Infarction in Conscious Rabbits via an Antioxidant-Sensitive Mechanism. Circulation Research, 1998, 83, 73-84.	4.5	230
9	Discovery of a new function of cyclooxygenase (COX)-2: COX-2 is a cardioprotective protein that alleviates ischemia/reperfusion injury and mediates the late phase of preconditioning. Cardiovascular Research, 2002, 55, 506-519.	3.8	220
10	Intracoronary Delivery of Autologous Cardiac Stem Cells Improves Cardiac Function in a Porcine Model of Chronic Ischemic Cardiomyopathy. Circulation, 2013, 128, 122-131.	1.6	214
11	Evidence That Late Preconditioning Against Myocardial Stunning in Conscious Rabbits Is Triggered by the Generation of Nitric Oxide. Circulation Research, 1997, 81, 42-52.	4.5	211
12	The NHLBI-Sponsored Consortium for preclinicAl assESsment of cARdioprotective Therapies (CAESAR). Circulation Research, 2015, 116, 572-586.	4.5	164
13	Demonstration of Selective Protein Kinase C–Dependent Activation of Src and Lck Tyrosine Kinases During Ischemic Preconditioning in Conscious Rabbits. Circulation Research, 1999, 85, 542-550.	4.5	161
14	Selective Activation of A 3 Adenosine Receptors With N 6 -(3-lodobenzyl)Adenosine-5′- N -Methyluronamide Protects Against Myocardial Stunning and Infarction Without Hemodynamic Changes in Conscious Rabbits. Circulation Research, 1997, 80, 800-809.	4.5	154
15	Inducible Nitric Oxide Synthase Modulates Cyclooxygenase-2 Activity in the Heart of Conscious Rabbits During the Late Phase of Ischemic Preconditioning. Circulation Research, 2002, 90, 602-608.	4.5	150
16	Long-Term Outcome of Administration of c-kit ^{POS} Cardiac Progenitor Cells After Acute Myocardial Infarction. Circulation Research, 2016, 118, 1091-1105.	4.5	144
17	Demonstration of an early and a late phase of ischemic preconditioning in mice. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H1375-H1387.	3.2	141
18	Gene Therapy With Extracellular Superoxide Dismutase Protects Conscious Rabbits Against Myocardial Infarction. Circulation, 2001, 103, 1893-1898.	1.6	140

XIANG-LIANG TANG

#	Article	IF	CITATIONS
19	A ₁ or A ₃ Adenosine Receptors Induce Late Preconditioning Against Infarction in Conscious Rabbits by Different Mechanisms. Circulation Research, 2001, 88, 520-528.	4.5	127
20	Aldose Reductase Is an Obligatory Mediator of the Late Phase of Ischemic Preconditioning. Circulation Research, 2002, 91, 240-246.	4.5	120
21	Biphasic response of cardiac NO synthase isoforms to ischemic preconditioning in conscious rabbits. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H2360-H2371.	3.2	118
22	Effects of anesthesia on echocardiographic assessment of left ventricular structure and function in rats. Basic Research in Cardiology, 2007, 102, 28-41.	5.9	107
23	Repeated Administrations of Cardiac Progenitor Cells Are Markedly More Effective Than a Single Administration. Circulation Research, 2016, 119, 635-651.	4.5	103
24	Protein Kinase C ε–Src Modules Direct Signal Transduction in Nitric Oxide–Induced Cardioprotection. Circulation Research, 2001, 88, 1306-1313.	4.5	101
25	Time Course of Late Preconditioning Against Myocardial Stunning in Conscious Pigs. Circulation Research, 1996, 79, 424-434.	4.5	99
26	Nitroglycerin Induces Late Preconditioning Against Myocardial Infarction in Conscious Rabbits Despite Development of Nitrate Tolerance. Circulation, 2001, 104, 694-699.	1.6	97
27	Evidence for an essential role of cyclooxygenase-2 as a mediator of the late phase of ischemic preconditioning in mice. Basic Research in Cardiology, 2000, 95, 479-484.	5.9	94
28	Delayed Adaptation of the Heart to Stress: Late Preconditioning. Stroke, 2004, 35, 2676-2679.	2.0	94
29	The Heme Oxygenase 1 Inducer (CoPP) Protects Human Cardiac Stem Cells against Apoptosis through Activation of the Extracellular Signal-regulated Kinase (ERK)/NRF2 Signaling Pathway and Cytokine Release. Journal of Biological Chemistry, 2012, 287, 33720-33732.	3.4	89
30	Nitric oxide triggers late preconditioning against myocardial infarction in conscious rabbits. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 273, H2931-H2936.	3.2	83
31	lschemic Preconditioning Increases iNOS Transcript Levels in Conscious Rabbits via a Nitric Oxide-dependent Mechanism. Journal of Molecular and Cellular Cardiology, 1999, 31, 1469-1481.	1.9	76
32	The late phase of preconditioning and its natural clinical application—gene therapy. Heart Failure Reviews, 2007, 12, 189-199.	3.9	64
33	Cardiac Progenitor Cells and Bone Marrow-Derived Very Small Embryonic-Like Stem Cells for Cardiac Repair After Myocardial Infarction. Circulation Journal, 2010, 74, 390-404.	1.6	62
34	Cardioprotection by postconditioning in conscious rats is limited to coronary occlusions <45 min. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2308-H2317.	3.2	60
35	Physiological Biomimetic Culture System for Pig and Human Heart Slices. Circulation Research, 2019, 125, 628-642.	4.5	60
36	Differential role of KATP channels in late preconditioning against myocardial stunning and infarction in rabbits. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H2350-H2359.	3.2	53

XIANG-LIANG TANG

#	Article	IF	CITATIONS
37	Cardioprotection During the Final Stage of the Late Phase of Ischemic Preconditioning Is Mediated by Neuronal NO Synthase in Concert With Cyclooxygenase-2. Circulation Research, 2004, 95, 84-91.	4.5	53
38	Cell therapy in patients with heart failure: a comprehensive review and emerging concepts. Cardiovascular Research, 2022, 118, 951-976.	3.8	52
39	Oxidant species trigger late preconditioning against myocardial stunning in conscious rabbits. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H281-H291.	3.2	51
40	Repeated Administrations of Cardiac Progenitor Cells Are Superior to a Single Administration of an Equivalent Cumulative Dose. Journal of the American Heart Association, 2018, 7, .	3.7	47
41	Bifunctional Role of Protein Tyrosine Kinases in Late Preconditioning Against Myocardial Stunning in Conscious Rabbits. Circulation Research, 1999, 85, 1154-1163.	4.5	45
42	δ-Opioid receptor-induced late preconditioning is mediated by cyclooxygenase-2 in conscious rabbits. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H1943-H1957.	3.2	45
43	Myocardial Reparative Properties of Cardiac Mesenchymal Cells IsolatedÂonÂtheÂBasis of Adherence. Journal of the American College of Cardiology, 2017, 69, 1824-1838.	2.8	45
44	Nitroglycerin induces late preconditioning against myocardial stunning via a PKC-dependent pathway. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H2488-H2494.	3.2	43
45	Hypercholesterolemia Abrogates Late Preconditioning via a Tetrahydrobiopterin-Dependent Mechanism in Conscious Rabbits. Circulation, 2005, 112, 2149-2156.	1.6	43
46	Epigenetically modified cardiac mesenchymal stromal cells limit myocardial fibrosis and promote functional recovery in a model of chronic ischemic cardiomyopathy. Basic Research in Cardiology, 2019, 114, 3.	5.9	41
47	Role of Cyclic Guanosine Monophosphate in Late Preconditioning in Conscious Rabbits. Circulation, 2002, 105, 3046-3052.	1.6	39
48	Effect of aspirin on late preconditioning against myocardial stunning in conscious rabbits. Journal of the American College of Cardiology, 2003, 41, 1183-1194.	2.8	36
49	Effects of Intracoronary Infusion of Escalating Doses of Cardiac Stem Cells in Rats With Acute Myocardial Infarction. Circulation: Heart Failure, 2015, 8, 757-765.	3.9	36
50	Nonelectrocardiographic evidence that both ischemic preconditioning and adenosine preconditioning exist in humans. Journal of the American College of Cardiology, 2003, 42, 437-445.	2.8	35
51	The cardioprotection of the late phase of ischemic preconditioning is enhanced by postconditioning via a COX-2-mediated mechanism in conscious rats. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2557-H2564.	3.2	35
52	Transient Cell Cycle Induction in Cardiomyocytes to Treat Subacute Ischemic Heart Failure. Circulation, 2022, 145, 1339-1355.	1.6	27
53	After the storm: an objective appraisal of the efficacy of c-kit+ cardiac progenitor cells in preclinical models of heart disease. Canadian Journal of Physiology and Pharmacology, 2021, 99, 129-139.	1.4	25
54	Hypercholesterolemia blunts NO donor-induced late preconditioning against myocardial infarction in conscious rabbits. Basic Research in Cardiology, 2004, 99, 395-403.	5.9	23

XIANG-LIANG TANG

#	Article	IF	CITATIONS
55	Pretreatment With Intracoronary Enalaprilat Protects Human Myocardium During Percutaneous Coronary Angioplasty. Journal of the American College of Cardiology, 2007, 49, 1607-1610.	2.8	22
56	Atorvastatin Therapy during the Peri-Infarct Period Attenuates Left Ventricular Dysfunction and Remodeling after Myocardial Infarction. PLoS ONE, 2011, 6, e25320.	2.5	22
57	Nicorandil induces late preconditioning against myocardial infarction in conscious rabbits. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1273-H1280.	3.2	21
58	Safety of Intracoronary Infusion of 20 Million C-Kit Positive Human Cardiac Stem Cells in Pigs. PLoS ONE, 2015, 10, e0124227.	2.5	20
59	Heart slice culture system reliably demonstrates clinical drug-related cardiotoxicity. Toxicology and Applied Pharmacology, 2020, 406, 115213.	2.8	19
60	Protection of IB-MECA against myocardial stunning in conscious rabbits is not mediated by the A1 adenosine receptor. Basic Research in Cardiology, 2001, 96, 487-496.	5.9	18
61	Sodium Nitrite Fails to Limit Myocardial Infarct Size: Results from the CAESAR Cardioprotection Consortium (LB645). FASEB Journal, 2014, 28, LB645.	0.5	18
62	Late preconditioning against stunning is not mediated by increased antioxidant defenses in conscious pigs. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 273, H1651-H1657.	3.2	16
63	Administration of Sildenafil at Reperfusion Fails to Reduce Infarct Size: Results from the CAESAR Cardioprotection Consortium (LB650). FASEB Journal, 2014, 28, LB650.	0.5	15
64	Late preconditioning enhances recovery of myocardial function after infarction in conscious rabbits. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H2372-H2381.	3.2	13
65	Role of Src protein tyrosine kinases in late preconditioning against myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H549-H556.	3.2	13
66	Effect of the stop-flow technique on cardiac retention of c-kit positive human cardiac stem cells after intracoronary infusion in a porcine model of chronic ischemic cardiomyopathy. Basic Research in Cardiology, 2015, 110, 503.	5.9	13
67	Protein tyrosine kinase signaling is necessary for NO donor-induced late preconditioning against myocardial stunning. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H1441-H1448.	3.2	12
68	Slicing and Culturing Pig Hearts under Physiological Conditions. Journal of Visualized Experiments, 2020, , .	0.3	9
69	Rapid Lipid Modification of Endothelial Cell Membranes in Cardiac Ischemia/Reperfusion Injury: a Novel Therapeutic Strategy to Reduce Infarct Size. Cardiovascular Drugs and Therapy, 2021, 35, 113-123.	2.6	8
70	The Effect of Cardiogenic Factors on Cardiac Mesenchymal Cell Anti-Fibrogenic Paracrine Signaling and Therapeutic Performance. Theranostics, 2020, 10, 1514-1530.	10.0	6
71	Effect of intravenous cell therapy in rats with old myocardial infarction. Molecular and Cellular Biochemistry, 2022, 477, 431-444.	3.1	3

The sad plight of cell therapy for heart failure: causes and consequences. , 2022, 2, .

3

#	Article	IF	CITATIONS
73	Ectopic Cardiogenic Transcription Factor Expression Augments the Antiâ€fibrogenic Activity of Administered Cardiac Mesenchymal Stromal Cells in a Model of Chronic Ischemic Cardiomyopathy. FASEB Journal, 2019, 33, lb476.	0.5	0