Chen Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5261128/publications.pdf Version: 2024-02-01

CHEN WANC

#	Article	IF	CITATIONS
1	The Cotton WRKY Gene GhWRKY41 Positively Regulates Salt and Drought Stress Tolerance in Transgenic Nicotiana benthamiana. PLoS ONE, 2015, 10, e0143022.	2.5	158
2	The Cotton <i>Mitogen-Activated Protein Kinase Kinase 3</i> Functions in Drought Tolerance by Regulating Stomatal Responses and Root Growth. Plant and Cell Physiology, 2016, 57, 1629-1642.	3.1	83
3	GhWRKY68 Reduces Resistance to Salt and Drought in Transgenic Nicotiana benthamiana. PLoS ONE, 2015, 10, e0120646.	2.5	78
4	The Function of MAPK Cascades in Response to Various Stresses in Horticultural Plants. Frontiers in Plant Science, 2020, 11, 952.	3.6	61
5	Overexpression of ChWRKY27a reduces tolerance to drought stress and resistance to Rhizoctonia solani infection in transgenic Nicotiana benthamiana. Frontiers in Physiology, 2015, 6, 265.	2.8	53
6	ghr-miR5272a-mediated regulation of GhMKK6 gene transcription contributes to the immune response in cotton. Journal of Experimental Botany, 2017, 68, 5895-5906.	4.8	45
7	The cotton MAPK kinase GhMPK20 negatively regulates resistance to <i>Fusarium oxysporum</i> by mediating the MKK4–MPK20–WRKY40 cascade. Molecular Plant Pathology, 2018, 19, 1624-1638.	4.2	41
8	Group <scp>llc WRKY</scp> transcription factors regulate cotton resistance to <i>Fusarium oxysporum</i> by promoting <scp>GhMKK2</scp> â€mediated flavonoid biosynthesis. New Phytologist, 2022, 236, 249-265.	7.3	32
9	GhWRKY21 regulates ABA-mediated drought tolerance by fine-tuning the expression of GhHAB in cotton. Plant Cell Reports, 2021, 40, 2135-2150.	5.6	26
10	Scaffold protein GhMORG1 enhances the resistance of cotton to <i>Fusarium oxysporum</i> by facilitating the MKK6â€MPK4 cascade. Plant Biotechnology Journal, 2020, 18, 1421-1433.	8.3	23
11	Characterization of the CDK5 gene in Apis cerana cerana (AccCDK5) and a preliminary identification of its activator gene, AccCDK5r1. Cell Stress and Chaperones, 2018, 23, 13-28.	2.9	22
12	Molecular Mechanism of the UDP-Glucuronosyltransferase 2B20-like Gene (AccUGT2B20-like) in Pesticide Resistance of Apis cerana cerana. Frontiers in Genetics, 2020, 11, 592595.	2.3	22
13	Overexpression of Cotton GhMPK11 Decreases Disease Resistance through the Gibberellin Signaling Pathway in Transgenic Nicotiana benthamiana. Frontiers in Plant Science, 2016, 7, 689.	3.6	21
14	Functions of RPM1-interacting protein 4 in plant immunity. Planta, 2021, 253, 11.	3.2	19
15	Molecular mechanism by which <i>Apis cerana cerana</i> MKK6 (<i>AccMKK6</i>)-mediated MAPK cascades regulate the oxidative stress response. Bioscience Reports, 2018, 38, .	2.4	11
16	The role of melatonin and Tryptophan-5-hydroxylase-1 in different abiotic stressors in Apis cerana cerana. Journal of Insect Physiology, 2021, 128, 104180.	2.0	11
17	Cloning and molecular identification of triosephosphate isomerase gene from Apis cerana cerana and its role in response to various stresses. Apidologie, 2016, 47, 792-804.	2.0	8
18	lsolation of <i>AccGalectin1</i> from <i>Apis cerana cerana</i> and its functions in development and adverse stress response. Journal of Cellular Biochemistry, 2019, 120, 671-684.	2.6	8

CHEN WANG

#	Article	IF	CITATIONS
19	Identification of an <i>Apis cerana</i> zinc finger protein 41 gene and its involvement in the oxidative stress response. Archives of Insect Biochemistry and Physiology, 2021, 108, e21830.	1.5	7
20	The Protein Phosphatase GhAP2C1 Interacts Together with GhMPK4 to Synergistically Regulate the Immune Response to Fusarium oxysporum in Cotton. International Journal of Molecular Sciences, 2022, 23, 2014.	4.1	6
21	Quantitative proteomic sequencing of <i>F</i> 1 hybrid populations reveals the function of sorbitol in apple resistance to <i>Botryosphaeria dothidea</i> . Horticulture Research, 2022, 9, .	6.3	6
22	AccPDIA6 from Apis cerana cerana plays important roles in antioxidation. Pesticide Biochemistry and Physiology, 2021, 175, 104830.	3.6	5
23	ldentification of an adaptor proteinâ€2 mu gene (<i>AccAP2m</i>) in <i>Apis cerana cerana</i> and its role in oxidative stress responses. Journal of Cellular Biochemistry, 2019, 120, 16600-16613.	2.6	4
24	Role of Apis cerana cerana N-terminal asparagine amidohydrolase (AccNtan1) in oxidative stress. Journal of Biochemistry, 2020, 168, 337-348.	1.7	4
25	Role of câ€Jun NH ₂ â€terminal kinaseâ€mediated mitogenâ€activated protein kinase pathway in response to pesticides in <i>Apis cerana cerana</i> . Insect Science, 2023, 30, 47-64.	3.0	4
26	Identification of an Apis cerana cerana MAP kinase phosphatase 3 gene (AccMKP3) in response to environmental stress. Cell Stress and Chaperones, 2019, 24, 1137-1149.	2.9	2