D Lee Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5260697/publications.pdf

Version: 2024-02-01

80

all docs

80 9,274 42 papers citations h-index

80

docs citations

h-index g-index

80 9098
times ranked citing authors

76

#	Article	IF	CITATIONS
1	Towards a unified paradigm for sequenceâ€based identification of fungi. Molecular Ecology, 2013, 22, 5271-5277.	3.9	2,997
2	Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Molecular Ecology, 1999, 8, 1837-1850.	3.9	381
3	Accurate Estimation of Fungal Diversity and Abundance through Improved Lineage-Specific Primers Optimized for Illumina Amplicon Sequencing. Applied and Environmental Microbiology, 2016, 82, 7217-7226.	3.1	321
4	A first comprehensive census of fungi in soil reveals both hyperdiversity and fineâ€scale niche partitioning. Ecological Monographs, 2014, 84, 3-20.	5.4	293
5	A sequence database for the identification of ectomycorrhizal basidiomycetes by phylogenetic analysis. Molecular Ecology, 1998, 7, 257-272.	3.9	276
6	Independent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 4510-4515.	7.1	258
7	Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas. New Phytologist, 2008, 177, 1020-1033.	7.3	255
8	Host Specificity in Ectomycorrhizal Communities: What Do the Exceptions Tell Us?. Integrative and Comparative Biology, 2002, 42, 352-359.	2.0	226
9	Symbiotic germination and development of the mycoâ€heterotrophic orchid Neottia nidusâ€avis in nature and its requirement for locally distributed Sebacina spp New Phytologist, 2002, 154, 233-247.	7.3	203
10	Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities. FEMS Microbiology Ecology, 2004, 49, 319-332.	2.7	200
11	Stable isotope fingerprinting: a novel method for identifying plant, fungal, or bacterial origins of amino acids. Ecology, 2009, 90, 3526-3535.	3.2	188
12	An empirical test of partner choice mechanisms in a wild legume–rhizobium interaction. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 77-81.	2.6	180
13	Partner Choice in Nitrogen-Fixation Mutualisms of Legumes and Rhizobia. Integrative and Comparative Biology, 2002, 42, 369-380.	2.0	174
14	High specificity generally characterizes mycorrhizal association in rare lady's slipper orchids, genus Cypripedium. Molecular Ecology, 2005, 14, 613-626.	3.9	171
15	Population, habitat and genetic correlates of mycorrhizal specialization in the 'cheating' orchids Corallorhiza maculata and C. mertensiana. Molecular Ecology, 1999, 8, 1719-1732.	3.9	157
16	Symbiotic germination and development of mycoâ€heterotrophic plants in nature: ontogeny of Corallorhiza trifida and characterization of its mycorrhizal fungi. New Phytologist, 2000, 145, 523-537.	7.3	147
17	Beringian origins and cryptic speciation events in the fly agaric (Amanita muscaria). Molecular Ecology, 2005, 15, 225-239.	3.9	143
18	An arctic community of symbiotic fungi assembled by longâ€distance dispersers: phylogenetic diversity of ectomycorrhizal basidiomycetes in Svalbard based on soil and sporocarp DNA. Journal of Biogeography, 2012, 39, 74-88.	3.0	143

#	Article	IF	CITATIONS
19	Divergence in mycorrhizal specialization within <i>Hexalectris spicata</i> (Orchidaceae), a nonphotosynthetic desert orchid. American Journal of Botany, 2003, 90, 1168-1179.	1.7	141
20	Rich and cold: diversity, distribution and drivers of fungal communities in patternedâ€ground ecosystems of the <scp>N</scp> orth <scp>A</scp> merican <scp>A</scp> rctic. Molecular Ecology, 2014, 23, 3258-3272.	3.9	134
21	THE EVOLUTIONARY HISTORY OF MYCORRHIZAL SPECIFICITY AMONG LADY'S SLIPPER ORCHIDS. Evolution; International Journal of Organic Evolution, 2007, 61, 1380-1390.	2.3	129
22	Resilience of Alaska's boreal forest to climatic changeThis article is one of a selection of papers from The Dynamics of Change in Alaska's Boreal Forests: Resilience and Vulnerability in Response to Climate Warming Canadian Journal of Forest Research, 2010, 40, 1360-1370.	1.7	125
23	Limitations on orchid recruitment: not a simple picture. Molecular Ecology, 2012, 21, 1511-1523.	3.9	122
24	Evidence for strong inter- and intracontinental phylogeographic structure in Amanita muscaria, a wind-dispersed ectomycorrhizal basidiomycete. Molecular Phylogenetics and Evolution, 2008, 48, 694-701.	2.7	113
25	Identification of mycorrhizal fungi from single pelotons ofDactylorhiza majalis(Orchidaceae) using single-strand conformation polymorphism and mitochondrial ribosomal large subunit DNA sequences. Molecular Ecology, 2001, 10, 2089-2093.	3.9	97
26	Evidence for mycorrhizal races in a cheating orchid. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 35-43.	2.6	95
27	Structure and resilience of fungal communities in Alaskan boreal forest soilsThis article is one of a selection of papers from The Dynamics of Change in Alaska's Boreal Forests: Resilience and Vulnerability in Response to Climate Warming Canadian Journal of Forest Research, 2010, 40, 1288-1301.	1.7	84
28	Abundance and distribution of Corallorhiza odontorhiza reflect variations in climate and ectomycorrhizae. Ecological Monographs, 2009, 79, 619-635.	5.4	72
29	Peeking through a frosty window: molecular insights into the ecology of Arctic soil fungi. Fungal Ecology, 2012, 5, 419-429.	1.6	67
30	Nitrogen deposition alters plant–fungal relationships: linking belowground dynamics to aboveground vegetation change. Molecular Ecology, 2014, 23, 1364-1378.	3.9	65
31	Rangewide analysis of fungal associations in the fully mycoheterotrophic <i>Corallorhiza striata</i> complex (Orchidaceae) reveals extreme specificity on ectomycorrhizal <i>Tomentella</i> (Thelephoraceae) across North America. American Journal of Botany, 2010, 97, 628-643.	1.7	63
32	TOPO TA is A-OK: a test of phylogenetic bias in fungal environmental clone library construction. Environmental Microbiology, 2007, 9, 1329-1334.	3.8	60
33	Surviving climate changes: high genetic diversity and transoceanic gene flow in two arctic–alpine lichens, ⟨i⟩Flavocetraria cucullata⟨/i⟩ and ⟨i⟩F. nivalis⟨/i⟩ (Parmeliaceae, Ascomycota). Journal of Biogeography, 2010, 37, 1529-1542.	3.0	60
34	Molecular phylogenetic biodiversity assessment of arctic and boreal ectomycorrhizal <i>Lactarius</i> Pers. (Russulales; Basidiomycota) in Alaska, based on soil and sporocarp DNA. Molecular Ecology, 2009, 18, 2213-2227.	3.9	59
35	A narrowly endemic photosynthetic orchid is nonâ€specific in its mycorrhizal associations. Molecular Ecology, 2013, 22, 2341-2354.	3.9	58
36	Root-Associated Ectomycorrhizal Fungi Shared by Various Boreal Forest Seedlings Naturally Regenerating after a Fire in Interior Alaska and Correlation of Different Fungi with Host Growth Responses. Applied and Environmental Microbiology, 2011, 77, 3351-3359.	3.1	55

#	Article	IF	CITATIONS
37	Germination patterns in three terrestrial orchids relate to abundance of mycorrhizal fungi. Journal of Ecology, 2016, 104, 744-754.	4.0	52
38	Belowâ€ground plant traits influence tundra plant acquisition of newly thawed permafrost nitrogen. Journal of Ecology, 2019, 107, 950-962.	4.0	51
39	Mycorrhizal specificity in the fully mycoheterotrophic <i>Hexalectris</i> Raf. (Orchidaceae:) Tj ETQq1 1 0.78431	1 rgBT /Ove	erlock 10 TF 9 49
40	Phylogenetic and ecological analyses of soil and sporocarp DNA sequences reveal high diversity and strong habitat partitioning in the boreal ectomycorrhizal genus <i>Russula</i> (Russulales;) Tj ETQq0 0 0 rgBT /C	v erla ck 10	Taf750 617 To
41	Increasing ecological inference from high throughput sequencing of fungi in the environment through a tagging approach. Molecular Ecology Resources, 2008, 8, 742-752.	4.8	45
42	Change in soil fungal community structure driven by a decline in ectomycorrhizal fungi following a mountain pine beetle (Dendroctonus ponderosae) outbreak. New Phytologist, 2017, 213, 864-873.	7.3	45
43	Frequent circumarctic and rare transequatorial dispersals in the lichenised agaricÂgenus Lichenomphalia (Hygrophoraceae, Basidiomycota). Fungal Biology, 2012, 116, 388-400.	2.5	43
44	Molecular diversity assessment of arctic and boreal <i>Agaricus</i> taxa. Mycologia, 2008, 100, 577-589.	1.9	40
45	Meeting Report: Fungal ITS Workshop (October 2012). Standards in Genomic Sciences, 2013, 8, 118-123.	1.5	34
46	Mycobiont contribution to tundra plant acquisition of permafrostâ€derived nitrogen. New Phytologist, 2020, 226, 126-141.	7.3	34
47	The Soil Fungi. , 2015, , 77-109.		33
48	Resilience of Arctic mycorrhizal fungal communities after wildfire facilitated by resprouting shrubs. Ecoscience, 2013, 20, 296-310.	1.4	32
49	The potential for mycobiont sharing between shrubs and seedlings to facilitate tree establishment after wildfire at Alaska arctic treeline. Molecular Ecology, 2017, 26, 3826-3838.	3.9	32
50	Host species and habitat affect nodulation by specific Frankia genotypes in two species of Alnus in interior Alaska. Oecologia, 2009, 160, 619-630.	2.0	27
51	Intercontinental divergence in the <i>Populus</i> â€associated ectomycorrhizal fungus, <i>Tricholoma populinum</i> . New Phytologist, 2012, 194, 548-560.	7.3	26
52	Fire-severity effects on plant–fungal interactions after a novel tundra wildfire disturbance: implications for arctic shrub and tree migration. BMC Ecology, 2016, 16, 25.	3.0	26
53	Altitudinal gradients fail to predict fungal symbiont responses to warming. Ecology, 2019, 100, e02740.	3.2	25
54	Mycoâ€heterotroph–fungus marriages – is fidelity overâ€rated?. New Phytologist, 2004, 163, 217-221.	7.3	24

#	Article	IF	CITATIONS
55	Ecosystem-level consequences of symbiont partnerships in an N-fixing shrub from interior Alaskan floodplains. Ecological Monographs, 2013, 83, 177-194.	5.4	23
56	A Bioinformatics Pipeline for Sequence-Based Analyses of Fungal Biodiversity. Methods in Molecular Biology, 2011, 722, 141-155.	0.9	22
57	Phylogeny of <i>Fomitopsis pinicola </i> : a species complex. Mycologia, 2016, 108, 925-938.	1.9	20
58	Plant Identity Influences Foliar Fungal Symbionts More Than Elevation in the Colorado Rocky Mountains. Microbial Ecology, 2019, 78, 688-698.	2.8	20
59	Phosphorus Mobilizing Enzymes of Alnus-Associated Ectomycorrhizal Fungi in an Alaskan Boreal Floodplain. Forests, 2019, 10, 554.	2.1	19
60	Archaeorhizomycetes: Patterns of Distribution and Abundance in Soil. Soil Biology, 2013, , 333-349.	0.8	19
61	Rivers may constitute an overlooked avenue of dispersal for terrestrial fungi. Fungal Ecology, 2018, 32, 72-79.	1.6	18
62	<i>Fomitopsis mounceae</i> and <i>F. schrenkii</i> â€"two new species from North America in the <i>F. pinicola</i> complex. Mycologia, 2019, 111, 339-357.	1.9	18
63	Evaluation of the authenticity of a highly novel environmental sequence from boreal forest soil using ribosomal RNA secondary structure modeling. Molecular Phylogenetics and Evolution, 2013, 67, 234-245.	2.7	16
64	A new dawn – the ecological genetics of mycorrhizal fungi. New Phytologist, 2000, 147, 236-239.	7.3	14
65	Getting to the root of the matter: landscape implications of plant-fungal interactions for tree migration in Alaska. Landscape Ecology, 2016, 31, 895-911.	4.2	13
66	Uncommon ectomycorrhizal networks: richness and distribution of <i>Alnus</i> ectomycorrhizal fungal communities. New Phytologist, 2013, 198, 978-980.	7.3	12
67	Direct amplification of DNA from fresh and preserved ectomycorrhizal root tips. Journal of Microbiological Methods, 2010, 80, 206-208.	1.6	11
68	Grass species identity shapes communities of root and leaf fungi more than elevation. ISME Communications, 2022, 2, .	4.2	11
69	Variable retention harvesting influences belowground plant-fungal interactions of <i>Nothofagus pumilio</i> seedlings in forests of southern Patagonia. PeerJ, 2018, 6, e5008.	2.0	9
70	Progress and Prospects for the Ecological Genetics of Mycoheterotrophs. , 2013, , 245-266.		8
71	Phylogeny and assemblage composition of <i><scp>F</scp>rankia</i> in <i><scp>A</scp>lnus tenuifolia</i> nodules across a primary successional sere in interior <scp>A</scp> laska. Molecular Ecology, 2013, 22, 3864-3877.	3.9	7
72	Epiphytic fungal communities vary by substrate type and at submetre spatial scales. Molecular Ecology, 2022, 31, 1879-1891.	3.9	7

#	Article	lF	CITATIONS
73	Phylogeographic Analyses of a Boreal-Temperate Ectomycorrhizal Basidiomycete, Amanita Muscaria, Suggest Forest Refugia in Alaska During the Last Glacial Maximum. , 2010, , 173-186.		5
74	Microsatellite loci development in mycoheterotrophic Corallorhiza maculata (Orchidaceae) with amplification in C. mertensiana. American Journal of Botany, 2011, 98, e253-e255.	1.7	5
75	Culturable root endophyte communities are shaped by both warming and plant host identity in the Rocky Mountains, USA. Fungal Ecology, 2021, 49, 101002.	1.6	5
76	Isolation and characterization of new polymorphic microsatellite loci in the mixotrophic orchid <i>Limodorum abortivum (i) L. Swartz (Orchidaceae). Molecular Ecology Resources, 2008, 8, 1117-1120.</i>	4.8	4
77	Limited overall impacts of ectomycorrhizal inoculation on recruitment of boreal trees into Arctic tundra following wildfire belie species-specific responses. PLoS ONE, 2020, 15, e0235932.	2.5	4
78	Soil fungal composition changes with shrub encroachment in the northern Chihuahuan Desert. Fungal Ecology, 2021, 53, 101096.	1.6	4
79	Habitat preferences, distribution, and temporal persistence of a novel fungal taxon in Alaskan boreal forest soils. Fungal Ecology, 2014, 12, 70-77.	1.6	3
80	Increasing ecological inference from high throughput sequencing of fungi in the environment through a tagging approach. Molecular Ecology Resources, 2008, .	4.8	0