Balkrishna C Rao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5260173/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How disruptive is frugal?. Technology in Society, 2013, 35, 65-73.	9.4	203
2	Large strain deformation and ultra-fine grained materials by machining. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 358-363.	5.6	106
3	On the performance of modified Zerilli-Armstrong constitutive model in simulating the metal-cutting process. Journal of Manufacturing Processes, 2017, 28, 253-265.	5.9	40
4	Advances in science and technology through frugality. IEEE Engineering Management Review, 2017, 45, 32-38.	1.3	34
5	Revisiting classical design in engineering from a perspective of frugality. Heliyon, 2017, 3, e00299.	3.2	18
6	The science underlying frugal innovations should not be frugal. Royal Society Open Science, 2019, 6, 180421.	2.4	18
7	Influence of workpiece texture and strain hardening on chip formation during machining of Ti–6Al–4V alloy. International Journal of Machine Tools and Manufacture, 2022, 173, 103849.	13.4	17
8	Alleviating Poverty in the Twenty-First Century Through Frugal Innovations. Challenge, 2014, 57, 40-59.	0.4	14
9	A study of process parameters on workpiece anisotropy in the laser engineered net shaping (LENS TM) process. Journal Physics D: Applied Physics, 2017, 50, 225303.	2.8	14
10	Production of fine-grained foils by large strain extrusion-machining of textured Ti–6Al–4V. Journal of Materials Research, 2018, 33, 108-120.	2.6	11
11	A Finite Element Study of Large Strain Extrusion Machining Using Modified Zerilli–Armstrong Constitutive Relation. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2021, 143, .	2.2	8
12	Frugal manufacturing in smart factories for widespread sustainable development. Royal Society Open Science, 2021, 8, 210375.	2.4	8
13	ON THE METHODOLOCY FOR QUANTIFYING INNOVATIONS. International Journal of Innovation Management, 2010, 14, 823-839.	1.2	6
14	Tensile testing of Al6061-T6 microspecimens with ultrafine grained structure derived from machining-based SPD process. Journal of Materials Research, 2014, 29, 1278-1287.	2.6	6
15	Scale up advanced frugal design principles. Nature Sustainability, 2020, 3, 772-772.	23.7	6
16	Advanced Frugal Innovations [Leading Edge]. IEEE Technology and Society Magazine, 2017, 36, 53-54.	0.8	4
17	A new constitutive relation for simulating plastic flow involving continuous-shear or shear-localisation during metal cutting. Philosophical Magazine, 2020, 100, 486-511.	1.6	2
18	On complex systems of adaptive frugal products. Royal Society Open Science, 2020, 7, 192057.	2.4	2

#	Article	IF	CITATIONS
19	A modified Zerilli–Armstrong constitutive model for simulating severe plastic deformation of a steel alloy. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2022, 236, 1022-1036.	2.4	2
20	Combustion synthesis of alumina with possible CO-GENERATION of power. International Journal of Hydrogen Energy, 2021, 46, 12682-12692.	7.1	0
21	Effect of Severe Plastic Deformation on the Mechanical Properties of Al6061 Alloy. Minerals, Metals and Materials Series, 2020, , 2113-2116.	0.4	0