Fengyun Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5260091/publications.pdf

Version: 2024-02-01

361045 433756 1,029 47 20 31 citations h-index g-index papers 47 47 47 1290 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Achieving small non-radiative energy loss through synergically non-fullerene electron acceptor selection and side chain engineering in benzo[1,2- <i>b</i> :4,5- <i>b</i> â 2 difuran polymer-based organic solar cells. Journal of Materials Chemistry A, 2021, 9, 15798-15806.	5.2	14
2	High-performance as-cast non-fullerene polymer solar cells from benzo[1,2- <i>b</i> :4,5- <i>b</i> àê²]difuran polymer <i>via</i> a rational copolymer design. Journal of Materials Chemistry C, 2021, 9, 13617-13624.	2.7	3
3	Benzo[1,2-b:4,5-b′]difuran Polymer-Based Non-Fullerene Organic Solar Cells: The Roles of Non-Fullerene Acceptors and Molybdenum Oxide on Their Ambient Stabilities and Processabilities. ACS Applied Materials & Interfaces, 2021, 13, 15448-15458.	4.0	18
4	Revealing the role of solvent additives in morphology and energy loss in benzodifuran polymer-based non-fullerene organic solar cells. Journal of Materials Chemistry A, 2021, 9, 26105-26112.	5.2	24
5	Multifunctional Perylenediimide-Based Cathode Interfacial Materials for High-Performance Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 13657-13665.	2.5	8
6	Halogenation on benzo[1,2-b:4,5-b′]difuran polymers for solvent additive-free non-fullerene polymer solar cells with efficiency exceeding 11%. Journal of Materials Chemistry C, 2020, 8, 139-146.	2.7	12
7	Integrated linker-regulation and ring-fusion engineering for efficient additive-free non-fullerene organic solar cells. Journal of Materials Chemistry C, 2020, 8, 12516-12526.	2.7	18
8	Highly efficient non-fullerene polymer solar cells from a benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]difuran-based conjugated polymer with improved stabilities. Journal of Materials Chemistry A, 2020, 8, 11381-11390.	5.2	13
9	Indacenodifuran-Based Non-Fullerene Electron Acceptors for Efficient Polymer Solar Cells. ACS Applied Energy Materials, 2020, 3, 6133-6138.	2.5	10
10	Realizing Efficient Single Organic Molecular White Light-Emitting Diodes from Conformational Isomerization of Quinazoline-Based Emitters. ACS Applied Materials & Samp; Interfaces, 2020, 12, 14233-14243.	4.0	60
11	Molecular engineering of thermally activated delayed fluorescence emitters to concurrently achieve high performance and reduced efficiency roll-off in organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 9966-9974.	2.7	20
12	Chain Engineering of Benzodifuranâ€Based Wideâ€Bandgap Polymers for Efficient Nonâ€Fullerene Polymer Solar Cells. Macromolecular Rapid Communications, 2019, 40, e1900227.	2.0	15
13	Manipulating Polymer Donors Toward a High-Performance Polymer Acceptor Based On a Fused Perylenediimide Building Block With a Built-In Twisting Configuration. ACS Applied Materials & Interfaces, 2019, 11, 29765-29772.	4.0	18
14	Highly Efficient Organic Room-Temperature Phosphorescent Luminophores through Tuning Triplet States and Spin–Orbit Coupling with Incorporation of a Secondary Group. Journal of Physical Chemistry Letters, 2019, 10, 7141-7147.	2.1	23
15	Side-chain effect on the photovoltaic performance of conjugated polymers based on benzodifuran and benzodithiophene-4,8-dione. MRS Advances, 2019, 4, 2001-2007.	0.5	O
16	Quinazolineâ€Based Thermally Activated Delayed Fluorecence for Highâ€Performance OLEDs with External Quantum Efficiencies Exceeding 20%. Advanced Optical Materials, 2019, 7, 1801496.	3.6	33
17	Fusion or non-fusion of quasi-two-dimensional fused perylene diimide acceptors: the importance of molecular geometry for fullerene-free organic solar cells. Journal of Materials Chemistry A, 2019, 7, 27493-27502.	5. 2	22
18	High-Performance All-Polymer Solar Cells Achieved by Fused Perylenediimide-Based Conjugated Polymer Acceptors. ACS Applied Materials & Interfaces, 2018, 10, 15962-15970.	4.0	50

#	Article	IF	CITATIONS
19	Highly efficient blue organic light-emitting diodes from pyrimidine-based thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2018, 6, 2351-2359.	2.7	58
20	Two-dimensional benzo[1,2- <i>b</i> :4,5- <i>b</i> a \in 2] difuran-based wide bandgap conjugated polymers for efficient fullerene-free polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 4023-4031.	5.2	37
21	Synthesis of an indacenodithiophene-based fully conjugated ladder polymer and its optical and electronic properties. Polymer Chemistry, 2018, 9, 2227-2231.	1.9	12
22	Novel perylene diimide-based polymers with electron-deficient segments as the comonomer for efficient all-polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 414-422.	5.2	69
23	Asymmetrical vs Symmetrical Selenophene-Annulated Fused Perylenediimide Acceptors for Efficient Non-Fullerene Polymer Solar Cells. ACS Applied Energy Materials, 2018, 1, 6577-6585.	2.5	42
24	An Asymmetrical Polymer Based on Thieno[2,3- <i>f</i>]benzofuran for Efficient Fullerene-Free Polymer Solar Cells. ACS Applied Energy Materials, 2018, 1, 1888-1892.	2.5	18
25	Effect of MgO Surface Modification on the TiO ₂ Nanowires Electrode for Self-Powered UV Photodetectors. ACS Sustainable Chemistry and Engineering, 2018, 6, 7265-7272.	3.2	43
26	Fused Perylene Diimide-Based Polymeric Acceptors for Efficient All-Polymer Solar Cells. Macromolecules, 2017, 50, 7559-7566.	2.2	74
27	ZnO nanorod arrays grown on an AlN buffer layer and their enhanced ultraviolet emission. CrystEngComm, 2017, 19, 6085-6088.	1.3	5
28	Highly fluorescent hyperbranched BODIPY-based conjugated polymer dots for cellular imaging. Chemical Communications, 2017, 53, 8612-8615.	2.2	27
29	The effect of annealing temperature on the optical and electrical properties of cubic MgZnO films grown by RF magnetron sputtering. Journal of Materials Science: Materials in Electronics, 2017, 28, 1644-1651.	1.1	7
30	Annealing-induced interfacial atomic intermixing in InAs/GaSb type II superlattices. Applied Physics Letters, 2017, 111, 172101.	1.5	2
31	The Effect of Trimethylaluminum Flow Rate on the Structure and Optical Properties of AllnGaN Quaternary Epilayers. Crystals, 2017, 7, 69.	1.0	3
32	Very high quantum efficiency in InAs/GaSb superlattice for very long wavelength detection with cutoff of $21\hat{a} \in \% < i > \hat{1} / 4 < i> m$. Applied Physics Letters, 2016, 108, .	1.5	21
33	Fabrication and improved photocatalytic activity of n-ZnO nanorod arrays/p-CuO thin film heterojunction. Journal of Materials Science: Materials in Electronics, 2016, 27, 8753-8757.	1.1	3
34	Heterostructured TiO2/MgO nanowire arrays for self-powered UV photodetectors. RSC Advances, 2016, 6, 85951-85957.	1.7	12
35	Zinc-doped SnO ₂ nanocrystals as photoanode materials for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 8076-8082.	5.2	44
36	Efficient photocatalyst based on ZnO nanorod arrays/p-type boron-doped-diamond heterojunction. Journal of Materials Science: Materials in Electronics, 2015, 26, 1018-1022.	1.1	20

#	Article	IF	CITATIONS
37	One-pot synthesis of hierarchical SnO2 hollow nanospindles self-assembled from nanorods and their lithium storage properties. RSC Advances, 2015, 5, 2586-2591.	1.7	8
38	Very long-wavelength (~ $20\hat{1}4$ m) InAs/GaSb superlattice infrared detector with double InSb-like interfaces. Proceedings of SPIE, 2014, , .	0.8	4
39	Precursorâ€controlled synthesis of different Zn <scp>O</scp> nanostructures by the hydrothermal method. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 595-600.	0.8	21
40	Gas sensing properties of self-assembled ZnO nanotube bundles. RSC Advances, 2013, 3, 16619.	1.7	27
41	Morphology and properties of ZnO nanostructures by electrochemical deposition: effect of the substrate treatment. Journal of Materials Science: Materials in Electronics, 2013, 24, 85-88.	1.1	8
42	A stable and efficient quasi-solid-state dye-sensitized solar cell with a low molecular weight organic gelator. Energy and Environmental Science, 2012, 5, 6151.	15.6	60
43	Demonstration Of GaNâ^•AlGaN Heterojunction For Dual Band Detection., 2011,,.		0
44	Determination of interface structure and atomic arrangements for strained InAs/Ga1â^'xInxSb superlattices by high-resolution transmission electron microscopy. Journal of Applied Physics, 2010, 108, 064508.	1.1	3
45	Interfacial structure of InAs/Ga1â^'xInxSb superlattices. Applied Physics Letters, 2009, 95, .	1.5	4
46	Influence of Mg/Er co-doping on the principal laser parameters of LiNbO3 crystals. Crystal Research and Technology, 2007, 42, 730-736.	0.6	5
47	Increased optical damage resistance of Zr:LiNbO3 crystals. Crystal Research and Technology, 2007, 42, 1117-1122.	0.6	31