Mukunda Mandal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5259982/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgF <i>_x </i> . Science, 2022, 377, 302-306.	12.6	141
2	Mechanistic Insights into the Alternating Copolymerization of Epoxides and Cyclic Anhydrides Using a (Salph)AlCl and Iminium Salt Catalytic System. Journal of the American Chemical Society, 2017, 139, 15222-15231.	13.7	125
3	Site-Selective Copper-Catalyzed Azidation of Benzylic C–H Bonds. Journal of the American Chemical Society, 2020, 142, 11388-11393.	13.7	112
4	Copper-catalysed benzylic C–H coupling with alcohols via radical relay enabled by redox buffering. Nature Catalysis, 2020, 3, 358-367.	34.4	108
5	Enhanced Activity of Heterogeneous Pd(II) Catalysts on Acid-Functionalized Metal–Organic Frameworks. ACS Catalysis, 2019, 9, 5383-5390.	11.2	77
6	Architectural Control of Isosorbide-Based Polyethers via Ring-Opening Polymerization. Journal of the American Chemical Society, 2019, 141, 5107-5111.	13.7	62
7	Mechanisms for Hydrogen-Atom Abstraction by Mononuclear Copper(III) Cores: Hydrogen-Atom Transfer or Concerted Proton-Coupled Electron Transfer?. Journal of the American Chemical Society, 2019, 141, 17236-17244.	13.7	55
8	Mechanism of the Polymerization of rac-Lactide by Fast Zinc Alkoxide Catalysts. Inorganic Chemistry, 2017, 56, 14366-14372.	4.0	37
9	Why So Slow? Mechanistic Insights from Studies of a Poor Catalyst for Polymerization of ε-Caprolactone. Inorganic Chemistry, 2017, 56, 725-728.	4.0	20
10	Sterically Induced Ligand Framework Distortion Effects on Catalytic Cyclic Ester Polymerizations. Inorganic Chemistry, 2018, 57, 3451-3457.	4.0	20
11	Computational Prediction and Experimental Verification of ε-Caprolactone Ring-Opening Polymerization Activity by an Aluminum Complex of an Indolide/Schiff-Base Ligand. ACS Catalysis, 2019, 9, 885-889.	11.2	20
12	Carboxylate Structural Effects on the Properties and Proton-Coupled Electron Transfer Reactivity of [CuO ₂ CR] ²⁺ Cores. Inorganic Chemistry, 2019, 58, 15872-15879.	4.0	16
13	Spatially resolved fluorescence of caesium lead halide perovskite supercrystals reveals quasi-atomic behavior of nanocrystals. Nature Communications, 2022, 13, 892.	12.8	15
14	Structure and Reactivity of Single-Site Vanadium Catalysts Supported on Metal–Organic Frameworks. ACS Catalysis, 2020, 10, 10051-10059.	11.2	14
15	Mechanism of Initiation Stereocontrol in Polymerization of <i>rac</i> -Lactide by Aluminum Complexes Supported by Indolide–Imine Ligands. Macromolecules, 2020, 53, 1809-1818.	4.8	13
16	Feasibility of Ionization-Mediated Pathway for Ultraviolet-Induced Melanin Damage. Journal of Physical Chemistry B, 2015, 119, 13288-13293.	2.6	12
17	Improvement of Photophysical Properties of CsPbBr ₃ and Mn ²⁺ :CsPb(Br,Cl) ₃ Perovskite Nanocrystals by Sr ²⁺ Doping for White Light-Emitting Diodes. Journal of Physical Chemistry C, 2022, 126, 11277-11284.	3.1	10
18	Quantum Efficiency Enhancement of Lead-Halide Perovskite Nanocrystal LEDs by Organic Lithium Salt Treatment. ACS Applied Materials & Interfaces, 2022, 14, 28985-28996.	8.0	9

#	Article	IF	CITATIONS
19	Tuning interfacial charge transfer in atomically precise nanographene–graphene heterostructures by engineering van der Waals interactions. Journal of Chemical Physics, 2022, 156, 074702.	3.0	5
20	Development of a Highly Responsive Organofluorine Temperature Sensor for ¹⁹ F Magnetic Resonance Applications. Analytical Chemistry, 2022, 94, 3782-3790.	6.5	4
21	Porphyrin Functionalization of CsPbBrI ₂ /SiO ₂ Core–Shell Nanocrystals Enhances the Stability and Efficiency in Electroluminescent Devices. Advanced Optical Materials, 2022, 10, 2101945.	7.3	2
22	The Devil is in the Details: Tailoring the Surface Chemistry of Perovskite Nanocrystals for Novel Optoelectronic Devices. , 0, , .		0