H W Villinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5259045/publications.pdf

Version: 2024-02-01

		567281	552781
31	1,355	15	26
papers	citations	h-index	g-index
31	31	31	1278
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hydrothermal recharge and discharge across 50 km guided by seamounts on a young ridge flank. Nature, 2003, 421, 618-621.	27.8	224
2	Abrupt thermal transition reveals hydrothermal boundary and role of seamounts within the Cocos Plate. Geophysical Research Letters, 2003, 30, .	4.0	132
3	Regional heat flow variations across the sedimented Juan de Fuca Ridge eastern flank: Constraints on lithospheric cooling and lateral hydrothermal heat transport. Journal of Geophysical Research, 1999, 104, 17675-17688.	3.3	127
4	Large heat and fluid fluxes driven through mid-plate outcrops on ocean crust. Nature Geoscience, 2008, 1, 611-614.	12.9	118
5	Gas hydrate stability and the assessment of heat flow through continental margins. Geophysical Journal International, 2001, 145, 647-660.	2.4	107
6	Effective resolution and drift of Paroscientific pressure sensors derived from longâ€term seafloor measurements. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	102
7	Interstitial fluid chemistry of sediments underlying the North Atlantic gyre and the influence of subsurface fluid flow. Earth and Planetary Science Letters, 2012, 323-324, 79-91.	4.4	77
8	Hydrothermal heat flux through aged oceanic crust: where does the heat escape?. Earth and Planetary Science Letters, 2002, 202, 159-170.	4.4	62
9	Miniaturized data loggers for deep sea sediment temperature gradient measurements. Marine Geology, 2002, 186, 557-570.	2.1	56
10	Hydrothermal activity and the evolution of the seismic properties of upper oceanic crust. Journal of Geophysical Research, 1999, 104, 5069-5079.	3.3	53
11	Inversion of marine heat flow measurements by expansion of the temperature decay function. Geophysical Journal International, 2002, 148, 628-636.	2.4	46
12	Marine Transform Faults and Fracture Zones: A Joint Perspective Integrating Seismicity, Fluid Flow and Life. Frontiers in Earth Science, 2019, 7, .	1.8	46
13	Widespread seawater circulation in 18–22 Ma oceanic crust: Impact on heat flow and sediment geochemistry. Geology, 2017, 45, 799-802.	4.4	37
14	A Fluid Pulse on the Hikurangi Subduction Margin: Evidence From a Heat Flux Transect Across the Upper Limit of Gas Hydrate Stability. Geophysical Research Letters, 2017, 44, 12,385.	4.0	25
15	Site surveys related to IODP Expedition 301: ImageFlux (SO149) and RetroFlux (TN116) expeditions and earlier studies. , 0, , .		20
16	Subseafloor Crossâ∈Hole Tracer Experiment Reveals Hydrologic Properties, Heterogeneities, and Reactions in Slowâ∈Spreading Oceanic Crust. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008804.	2.5	17
17	Seismotectonics of the Horseshoe Abyssal Plain and Gorringe Bank, eastern Atlantic Ocean: Constraints from ocean bottom seismometer data. Journal of Geophysical Research: Solid Earth, 2017, 122, 63-78.	3.4	15
18	Geophysical site survey results from North Pond (Mid-Atlantic Ridge). Proceedings of the Integrated Ocean Drilling Program, 0, , .	1.0	12

#	Article	IF	CITATIONS
19	CORK-Lite: Bringing Legacy Boreholes Back to Life. Scientific Drilling, 0, 14, 39-43.	0.6	11
20	Formation of hydrothermal pits and the role of seamounts in the Guatemala Basin (Equatorial East) Tj ETQq0 0 (O rgBT /Ov 2.5	erlock 10 Tf 5 10
21	Aging of oceanic crust at the Southern East Pacific Rise. Eos, 1996, 77, 504.	0.1	9
22	Combining <i>in situ</i> monitoring using seabed instruments and numerical modelling to assess the transient stability of underwater slopes. Geological Society Special Publication, 2019, 477, 511-521.	1.3	9
23	Thermal constraints on the frictional conditions of the nucleation and rupture area of the 1992 Nicaragua tsunami earthquake. Geophysical Journal International, 2009, 179, 1265-1278.	2.4	8
24	Deciphering the ocean bottom pressure variation in the Logatchev hydrothermal field at the eastern flank of the Mid-Atlantic Ridge. Geochemistry, Geophysics, Geosystems, 2011 , 12 , $n/a-n/a$.	2.5	8
25	Evaluation of decomposition tools for sea floor pressure data. Computers and Geosciences, 2012, 45, 4-12.	4.2	6
26	A new concept for an ocean bottom pressure meter capable of precision longâ€term monitoring in marine geodesy and oceanography. Earth and Space Science, 2015, 2, 181-186.	2.6	6
27	Evidence for Lowâ€Temperature Diffuse Venting at North Pond, Western Flank of the Midâ€Atlantic Ridge. Geochemistry, Geophysics, Geosystems, 2019, 20, 2572-2584.	2.5	6
28	Hydrothermal Activity at a Cretaceous Seamount, Canary Archipelago, Caused by Rejuvenated Volcanism. Frontiers in Marine Science, 2020, 7, .	2.5	4
29	4. The Thermal State of 18–24 Ma Upper Lithosphere Subducting Below the Nicoya Peninsula, Northern Costa Rica Margin. , 2007, , 86-122.		1
30	Thermal Characterization of Pockmarks Across Vestnesa and Svyatogor Ridges, Offshore Svalbard. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019468.	3.4	1
31	Geothermal heating and episodic cold-seawater intrusions into an isolated ridge-flank basin near the Mid-Atlantic Ridge. Communications Earth & Environment, 2021, 2, .	6.8	0