
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5258649/publications.pdf Version: 2024-02-01

POREDTILEE

#	Article	IF	CITATIONS
1	CpG Oligodeoxynucleotides for Anticancer Monotherapy from Preclinical Stages to Clinical Trials. Pharmaceutics, 2022, 14, 73.	4.5	25
2	An overview of cancer drugs approved through expedited approval programs and orphan medicine designation globally between 2011 and 2020. Drug Discovery Today, 2022, 27, 1236-1250.	6.4	15
3	Anti-lung cancer effect of paclitaxel solid lipid nanoparticles delivery system with curcumin as co-loading partner in vitro and in vivo. Drug Delivery, 2022, 29, 1878-1891.	5.7	27
4	lvermectin Enhanced Antitumor Activity of Resiquimod in a Co-Loaded Squalene Emulsion. Journal of Pharmaceutical Sciences, 2022, 111, 3038-3046.	3.3	4
5	Formulation of the novel structure curcumin derivative–loaded solid lipid nanoparticles: synthesis, optimization, characterization and anti-tumor activity screening <i>in vitro</i> . Drug Delivery, 2022, 29, 2044-2057.	5.7	10
6	Perinatal inflammation alters histone 3 and histone 4 methylation patterns: Effects of MiR-29b supplementation. Redox Biology, 2021, 38, 101783.	9.0	10
7	Nanoparticle delivery of microRNA-146a regulates mechanotransduction in lung macrophages and mitigates injury during mechanical ventilation. Nature Communications, 2021, 12, 289.	12.8	40
8	Targeting of Drug Nanocarriers. Nanomedicine and Nanotoxicology, 2021, , 107-126.	0.2	0
9	Self-Assembled pH-Sensitive Polymeric Nanoparticles for the Inflammation-Targeted Delivery of Cu/Zn-Superoxide Dismutase. ACS Applied Materials & Interfaces, 2021, 13, 18152-18164.	8.0	14
10	PLGA/PCADK composite microspheres containing hyaluronic acid–chitosan siRNA nanoparticles: A rational design for rheumatoid arthritis therapy. International Journal of Pharmaceutics, 2021, 596, 120204.	5.2	16
11	A solid lipid coated calcium peroxide nanocarrier enables combined cancer chemo/chemodynamic therapy with O2/H2O2 self-sufficiency. Acta Biomaterialia, 2021, 122, 354-364.	8.3	49
12	High-density lipoprotein modulates tumor-associated macrophage for chemoimmunotherapy of hepatocellular carcinoma. Nano Today, 2021, 37, 101064.	11.9	20
13	A novel protein-drug conjugate, SSH20, demonstrates significant efficacy in caveolin-1-expressing tumors. Molecular Therapy - Oncolytics, 2021, 22, 555-564.	4.4	9
14	Design of a Novel Nucleus-Targeted NLS-KALA-SA Nanocarrier to Delivery Poorly Water-Soluble Anti-Tumor Drug for Lung Cancer Treatment. Journal of Pharmaceutical Sciences, 2021, 110, 2432-2441.	3.3	13
15	A Squalene-Based Nanoemulsion for Therapeutic Delivery of Resiquimod. Pharmaceutics, 2021, 13, 2060.	4.5	8
16	Platinum complexes of curcumin delivered by dual-responsive polymeric nanoparticles improve chemotherapeutic efficacy based on the enhanced anti-metastasis activity and reduce side effects. Acta Pharmaceutica Sinica B, 2020, 10, 1106-1121.	12.0	58
17	Isoforsythiaside Attenuates Alzheimer's Disease via Regulating Mitochondrial Function Through the PI3K/AKT Pathway. International Journal of Molecular Sciences, 2020, 21, 5687.	4.1	21
18	Exosome-Mediated Crosstalk between Keratinocytes and Macrophages in Cutaneous Wound Healing. ACS Nano, 2020, 14, 12732-12748.	14.6	106

#	Article	IF	CITATIONS
19	Calcitriol‣oaded Dualâ€pHâ€5ensitive Micelle Counteracts Proâ€Metastasis Effect of Paclitaxel in Tripleâ€Negative Breast Cancer Therapy. Advanced Healthcare Materials, 2020, 9, e2000392.	7.6	24
20	<p>Nano Encapsulated Curcumin: And Its Potential for Biomedical Applications</p> . International Journal of Nanomedicine, 2020, Volume 15, 3099-3120.	6.7	108
21	Cell-Penetrating Peptides in Diagnosis and Treatment of Human Diseases: From Preclinical Research to Clinical Application. Frontiers in Pharmacology, 2020, 11, 697.	3.5	276
22	One-pot synthesis of a microporous organosilica-coated cisplatin nanoplatform for HIF-1-targeted combination cancer therapy. Theranostics, 2020, 10, 2918-2929.	10.0	29
23	A Liposomal Formulation for Improving Solubility and Oral Bioavailability of Nifedipine. Molecules, 2020, 25, 338.	3.8	15
24	Anti-inflammation of Erianin in dextran sulphate sodium-induced ulcerative colitis mice model via collaborative regulation of TLR4 and STAT3. Chemico-Biological Interactions, 2020, 324, 109089.	4.0	21
25	Myocardium-targeted transplantation of PHD2 shRNA-modified bone mesenchymal stem cells through ultrasound-targeted microbubble destruction protects the heart from acute myocardial infarction. Theranostics, 2020, 10, 4967-4982.	10.0	22
26	Folic acid receptor-targeted human serum albumin nanoparticle formulation of cabazitaxel for tumor therapy. International Journal of Nanomedicine, 2019, Volume 14, 135-148.	6.7	44
27	Hybrid micelles containing methotrexate-conjugated polymer and co-loaded with microRNA-124 for rheumatoid arthritis therapy. Theranostics, 2019, 9, 5282-5297.	10.0	36
28	Enhancement of cisplatin efficacy by lipid–CaO ₂ nanocarrier-mediated comprehensive modulation of the tumor microenvironment. Biomaterials Science, 2019, 7, 4260-4272.	5.4	48
29	In vitro evaluation of folate-modified PLGA nanoparticles containing paclitaxel for ovarian cancer therapy. Materials Science and Engineering C, 2019, 105, 110038.	7.3	35
30	<p>Development of a stable single-vial liposomal formulation for vincristine</p> . International Journal of Nanomedicine, 2019, Volume 14, 4461-4474.	6.7	12
31	Hepatocellular Carcinoma Growth Retardation and PD-1 Blockade Therapy Potentiation with Synthetic High-density Lipoprotein. Nano Letters, 2019, 19, 5266-5276.	9.1	40
32	Anticancer activity of polymeric nanoparticles containing linoleic acid-SN38 (LA-SN38) conjugate in a murine model of colorectal cancer. Colloids and Surfaces B: Biointerfaces, 2019, 181, 822-829.	5.0	27
33	Liposomal Vitamin D3 as an Anti-aging Agent for the Skin. Pharmaceutics, 2019, 11, 311.	4.5	36
34	Folate Receptor-Targeted Albumin Nanoparticles Based on Microfluidic Technology to Deliver Cabazitaxel. Cancers, 2019, 11, 1571.	3.7	34
35	Trastuzumab-Coated Nanoparticles Loaded With Docetaxel for Breast Cancer Therapy. Dose-Response, 2019, 17, 155932581987258.	1.6	32
36	Biocompatible co-loading vehicles for delivering both nanoplatin cores and siRNA to treat hepatocellular carcinoma. International Journal of Pharmaceutics, 2019, 572, 118769.	5.2	9

#	Article	IF	CITATIONS
37	Polyethylenimine-based Formulations for Delivery of Oligonucleotides. Current Medicinal Chemistry, 2019, 26, 2264-2284.	2.4	47
38	Selenium-doped calcium carbonate nanoparticles loaded with cisplatin enhance efficiency and reduce side effects. International Journal of Pharmaceutics, 2019, 570, 118638.	5.2	18
39	Solid lipid nanoparticles as a drug delivery system to across the blood-brain barrier. Biochemical and Biophysical Research Communications, 2019, 519, 385-390.	2.1	43
40	Cell-Penetrating Peptide and Transferrin Co-Modified Liposomes for Targeted Therapy of Glioma. Molecules, 2019, 24, 3540.	3.8	42
41	Delivery of siRNA using folate receptor-targeted pH-sensitive polymeric nanoparticles for rheumatoid arthritis therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 20, 102017.	3.3	43
42	Selection of fluorescent dye for tracking biodistribution of paclitaxel in live imaging. Colloids and Surfaces B: Biointerfaces, 2019, 181, 872-878.	5.0	13
43	Thiophene Derivatives as New Anticancer Agents and Their Therapeutic Delivery Using Folate Receptor-Targeting Nanocarriers. ACS Omega, 2019, 4, 8874-8880.	3.5	18
44	Multifunctional drug carrier based on PEI derivatives loaded with small interfering RNA for therapy of liver cancer. International Journal of Pharmaceutics, 2019, 564, 214-224.	5.2	21
45	Targeted and Efficient Delivery of siRNA Using Tunable Polymeric Hybrid Micelles for Tumor Therapy. Anticancer Research, 2019, 39, 1169-1178.	1.1	8
46	Delivery of Antisense Oligonucleotide LOR-2501 Using Transferrin-conjugated Polyethylenimine-based Lipid Nanoparticle. Anticancer Research, 2019, 39, 1785-1793.	1.1	9
47	Targeted Co-Delivery of siRNA and Methotrexate for Tumor Therapy via Mixed Micelles. Pharmaceutics, 2019, 11, 92.	4.5	15
48	The long non-coding RNA HOXB-AS3 regulates ribosomal RNA transcription in NPM1-mutated acute myeloid leukemia. Nature Communications, 2019, 10, 5351.	12.8	71
49	Hypocrellin A-based photodynamic action induces apoptosis in A549 cells through ROS-mediated mitochondrial signaling pathway. Acta Pharmaceutica Sinica B, 2019, 9, 279-293.	12.0	95
50	Cell-penetrating Peptide-coated Liposomes for Drug Delivery Across the Blood–Brain Barrier. Anticancer Research, 2019, 39, 237-243.	1.1	37
51	Thiophene Derivatives as Anticancer Agents and Their Delivery to Tumor Cells Using Albumin Nanoparticles. Molecules, 2019, 24, 192.	3.8	16
52	Polymer blends used to develop felodipine-loaded hollow microspheres for improved oral bioavailability. International Journal of Biological Macromolecules, 2018, 112, 1038-1047.	7.5	10
53	Folate receptor-targeted lipid-albumin nanoparticles (F-LAN) for therapeutic delivery of an Akt1 antisense oligonucleotide. Journal of Drug Targeting, 2018, 26, 466-473.	4.4	13
54	Enhancing anti-tumor efficiency in hepatocellular carcinoma through the autophagy inhibition by miR-375/sorafenib in lipid-coated calcium carbonate nanoparticles. Acta Biomaterialia, 2018, 72, 248-255.	8.3	59

#	Article	IF	CITATIONS
55	Preparation of Immunoliposomes by Direct Coupling of Antibodies Based on a Thioether Bond. Methods in Molecular Biology, 2018, 1674, 229-237.	0.9	11
56	Delivery of paclitaxel using nanoparticles composed of poly(ethylene oxide)-b-poly(butylene oxide) (PEO-PBO). Colloids and Surfaces B: Biointerfaces, 2018, 161, 464-470.	5.0	14
57	Antitumor effect of a liposome-encapsulated β1,4-galactosyltransferase inhibitor. International Journal of Pharmaceutics, 2018, 552, 388-393.	5.2	2
58	Ketoprofen and MicroRNA-124 Co-loaded poly (lactic-co-glycolic acid) microspheres inhibit progression of Adjuvant-induced arthritis in rats. International Journal of Pharmaceutics, 2018, 552, 148-153.	5.2	27
59	Liposomal codelivery of an SN38 prodrug and a survivin siRNA for tumor therapy. International Journal of Nanomedicine, 2018, Volume 13, 5811-5822.	6.7	15
60	Clinical translation of immunoliposomes for cancer therapy: recent perspectives. Expert Opinion on Drug Delivery, 2018, 15, 893-903.	5.0	44
61	Recent Advances and Perspectives in Liposomes for Cutaneous Drug Delivery. Current Medicinal Chemistry, 2018, 25, 606-635.	2.4	101
62	Enhancing the therapeutic effect via elimination of hepatocellular carcinoma stem cells using Bmi1 siRNA delivered by cationic cisplatin nanocapsules. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2009-2021.	3.3	27
63	Topical Lyophilized Targeted Lipid Nanoparticles in the Restoration of Skin Barrier Function following Burn Wound. Molecular Therapy, 2018, 26, 2178-2188.	8.2	44
64	Dual-functional lipid polymeric hybrid pH-responsive nanoparticles decorated with cell penetrating peptide and folate for therapy against rheumatoid arthritis. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 130, 39-47.	4.3	46
65	T7 Peptide-Conjugated Lipid Nanoparticles for Dual Modulation of Bcl-2 and Akt-1 in Lung and Cervical Carcinomas. Molecular Pharmaceutics, 2018, 15, 4722-4732.	4.6	22
66	Skin cancer treatment effectiveness is improved by iontophoresis of EGFR-targeted liposomes containing 5-FU compared with subcutaneous injection. Journal of Controlled Release, 2018, 283, 151-162.	9.9	78
67	Targeted Liposomes for siRNA Delivery to Cancer. Current Pharmaceutical Design, 2018, 24, 2664-2672.	1.9	23
68	A Novel Paclitaxel-Loaded Polymeric Micelle System with Favorable Biocompatibility and Superior Antitumor Activity. Anticancer Research, 2018, 38, 219-225.	1.1	3
69	Anti-HER2 immunoliposomes for co-delivery of paclitaxel and rapamycin for breast cancer therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 115, 159-167.	4.3	86
70	Tat-Tagged and Folate-Modified <i>N</i> -Succinyl-chitosan (Tat-Suc-FA) Self-assembly Nanoparticle for Therapeutic Delivery OGX-011 to A549 Cells. Molecular Pharmaceutics, 2017, 14, 1898-1905.	4.6	15
71	Lipid Nanoparticles Loaded with an Antisense Oligonucleotide Gapmer Against Bcl-2 for Treatment of Lung Cancer. Pharmaceutical Research, 2017, 34, 310-320.	3.5	28
72	MiR-375 delivered by lipid-coated doxorubicin-calcium carbonate nanoparticles overcomes chemoresistance in hepatocellular carcinoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2507-2516.	3.3	42

#	Article	IF	CITATIONS
73	MICA-Expressing Monocytes Enhance Natural Killer Cell Fc Receptor-Mediated Antitumor Functions. Cancer Immunology Research, 2017, 5, 778-789.	3.4	12
74	Pharmacokinetics of a liposomal formulation of doxorubicin in rats. Saudi Pharmaceutical Journal, 2017, 25, 531-536.	2.7	9
75	Single-step microfluidic synthesis of transferrin-conjugated lipid nanoparticles for siRNA delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 371-381.	3.3	39
76	Delivery of miR-375 and doxorubicin hydrochloride by lipid-coated hollow mesoporous silica nanoparticles to overcome multiple drug resistance in hepatocellular carcinoma. International Journal of Nanomedicine, 2017, Volume 12, 5271-5287.	6.7	62
77	Microfluidic hydrodynamic focusing synthesis of polymer-lipid nanoparticles for siRNA delivery. Oncotarget, 2017, 8, 96826-96836.	1.8	21
78	Paecilomyces tenuipes extract prevents depression-like behaviors in chronic unpredictable mild stress-induced rat model via modulation of neurotransmitters. Molecular Medicine Reports, 2017, 16, 2172-2178.	2.4	9
79	Multifunctional folate receptor-targeting and pH-responsive nanocarriers loaded with methotrexate for treatment of rheumatoid arthritis. International Journal of Nanomedicine, 2017, Volume 12, 6735-6746.	6.7	79
80	Enhancing the Therapeutic Delivery of Oligonucleotides by Chemical Modification and Nanoparticle Encapsulation. Molecules, 2017, 22, 1724.	3.8	36
81	Antitumor activity of a folate receptor-targeted immunoglobulin C-doxorubicin conjugate. International Journal of Nanomedicine, 2017, Volume 12, 2505-2515.	6.7	4
82	Investigation of hypoglycemic, hypolipidemic and anti-nephritic activities of Paecilomyces tenuipesN45 in diet/streptozotocin-induced diabetic rats. Molecular Medicine Reports, 2017, 15, 2807-2813.	2.4	3
83	Transferrin-conjugated liposomes loaded with novel dihydroquinoline derivatives as potential anticancer agents. PLoS ONE, 2017, 12, e0186821.	2.5	6
84	Liquid-Crystalline Nanodispersions Containing Monoolein for Photodynamic Therapy of Skin Diseases: A Mini-Review. Current Nanoscience, 2017, 13, .	1.2	8
85	Rapamycin-loaded Immunoliposomes Functionalized with Trastuzumab: A Strategy to Enhance Cytotoxicity to HER2-positive Breast Cancer Cells. Anti-Cancer Agents in Medicinal Chemistry, 2017, 17, 48-56.	1.7	23
86	Liposomes Incorporating Transferrin and Stearic Acid-modified Octa-arginine for siRNA Delivery. Anticancer Research, 2017, 37, 1759-1764.	1.1	6
87	Synergistic Inhibition of Human Carcinoma Cell Growth via Co-Delivery of p53 Plasmid DNA and bcl-2 Antisense Oligodeoxyribonucleotide by Cholic Acid-modified Polyethylenimine. Anticancer Research, 2017, 37, 6335-6340.	1.1	4
88	Rapamycin-loaded Immunoliposomes Functionalized with Trastuzumab: A Strategy to Enhance Cytotoxicity to HER2-positive Breast Cancer Cells. Anti-Cancer Agents in Medicinal Chemistry, 2017, 17, 48-56.	1.7	4
89	Role of Four Different Kinds of Polyethylenimines (PEIs) in Preparation of Polymeric Lipid Nanoparticles and Their Anticancer Activity Study. Journal of Cancer, 2016, 7, 872-882.	2.5	26
90	Anti-tumor Efficiency of Lipid-coated Cisplatin Nanoparticles Co-loaded with MicroRNA-375. Theranostics, 2016, 6, 142-154.	10.0	71

#	Article	IF	CITATIONS
91	Cordycepin, a Natural Antineoplastic Agent, Induces Apoptosis of Breast Cancer Cells via Caspase-dependent Pathways. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	27
92	Antidiabetic and Antinephritic Activities of Aqueous Extract of <i>Cordyceps militaris</i> Fruit Body in Diet-Streptozotocin-Induced Diabetic Sprague Dawley Rats. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-11.	4.0	25
93	Cabazitaxel-loaded human serum albumin nanoparticles as a therapeutic agent against prostate cancer. International Journal of Nanomedicine, 2016, Volume 11, 3451-3459.	6.7	58
94	Synthesis of Polymer-Lipid Nanoparticles by Microfluidic Focusing for siRNA Delivery. Molecules, 2016, 21, 1314.	3.8	19
95	AntihypoxamiR functionalized gramicidin lipid nanoparticles rescue against ischemic memory improving cutaneous wound healing. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1827-1831.	3.3	41
96	Folate-conjugated immunoglobulin targets melanoma tumor cells for NK cell effector functions. Melanoma Research, 2016, 26, 329-337.	1.2	11
97	Nanotechnology for the delivery of phytochemicals in cancer therapy. Biotechnology Advances, 2016, 34, 343-353.	11.7	124
98	Preparation of Targeted Anionic Lipid-Coated Polyplexes for MicroRNA Delivery. Methods in Molecular Biology, 2016, 1445, 201-213.	0.9	1
99	Delivery of siRNA Using Lipid Nanoparticles Modified with Cell Penetrating Peptide. ACS Applied Materials & Interfaces, 2016, 8, 26613-26621.	8.0	48
100	Functional exosome-mimic for delivery of siRNA to cancer: in vitro and in vivo evaluation. Journal of Controlled Release, 2016, 243, 160-171.	9.9	152
101	Cordyceps militaris induces tumor cell death via the caspase-dependent mitochondrial pathway in HepG2 and MCF-7 cells. Molecular Medicine Reports, 2016, 13, 5132-5140.	2.4	26
102	Lipid–Albumin Nanoparticles (LAN) for Therapeutic Delivery of Antisense Oligonucleotide against HIF-1α. Molecular Pharmaceutics, 2016, 13, 2555-2562.	4.6	17
103	Co-loaded paclitaxel/rapamycin liposomes: Development, characterization and in vitro and in vivo evaluation for breast cancer therapy. Colloids and Surfaces B: Biointerfaces, 2016, 141, 74-82.	5.0	112
104	Induced Apoptosis Investigation in Wild-type and FLT3-ITD Acute Myeloid Leukemia Cells by Nanochannel Electroporation and Single-cell qRT-PCR. Molecular Therapy, 2016, 24, 956-964.	8.2	10
105	Lipid Nanoparticles Composed of Quaternary Amine–Tertiary Amine Cationic Lipid Combination (QTsome) for Therapeutic Delivery of AntimiR-21 for Lung Cancer. Molecular Pharmaceutics, 2016, 13, 653-662.	4.6	49
106	Complete regression of xenograft tumors using biodegradable mPEG-PLA-SN38 block copolymer micelles. Colloids and Surfaces B: Biointerfaces, 2016, 142, 417-423.	5.0	18
107	The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Advanced Drug Delivery Reviews, 2016, 99, 129-137.	13.7	372
108	NK Cell–Mediated Antitumor Effects of a Folate-Conjugated Immunoglobulin Are Enhanced by Cytokines. Cancer Immunology Research, 2016, 4, 323-336.	3.4	5

#	Article	IF	CITATIONS
109	Improvement of oral availability of ginseng fruit saponins by a proliposome delivery system containing sodium deoxycholate. Saudi Journal of Biological Sciences, 2016, 23, S113-S125.	3.8	26
110	Targeting the RAS/MAPK pathway with <i>miR-181a</i> in acute myeloid leukemia. Oncotarget, 2016, 7, 59273-59286.	1.8	50
111	Cold nanoparticles delivered miR-375 for treatment of hepatocellular carcinoma. Oncotarget, 2016, 7, 86675-86686.	1.8	47
112	Liposomal bortezomib is active against chronic myeloid leukemia by disrupting the Sp1-BCR/ABL axis. Oncotarget, 2016, 7, 36382-36394.	1.8	14
113	Actively Targeted Nanoparticles for Drug Delivery to Tumor. Current Drug Metabolism, 2016, 17, 763-782.	1.2	69
114	CD33 Targeted Immunoliposomal Delivery of OSU-2S, a Non-Immunosuppressive FTY720 Derivative, Mediates Selective Cytotoxicity in Acute Myeloid Leukemia. Blood, 2016, 128, 2748-2748.	1.4	0
115	Effect of Eudragit on In Vitro Transfection Efficiency of PEI-DNA Complexes. Anticancer Research, 2016, 36, 81-5.	1.1	8
116	Human Serum Albumin Nanoparticles as a Novel Delivery System for Cabazitaxel. Anticancer Research, 2016, 36, 1649-56.	1.1	20
117	A Novel 1,2-Dihydroquinoline Anticancer Agent and Its Delivery to Tumor Cells Using Cationic Liposomes. Anticancer Research, 2016, 36, 2105-11.	1.1	5
118	Delivery of siRNA Using Cationic Liposomes Incorporating Stearic Acid-modified Octa-Arginine. Anticancer Research, 2016, 36, 3271-6.	1.1	2
119	Evaluation of a Non-aqueous Ibuprofen-Phospholipid Complex Formulation in Rats. In Vivo, 2016, 30, 479-83.	1.3	2
120	Efficient antisense oligonucleotide delivery via non-covalent complexes of folic acid and modified polyethylenimine. Journal of Controlled Release, 2015, 213, e68-e69.	9.9	0
121	Silencing of Survivin Expression Leads to Reduced Proliferation and Cell Cycle Arrest in Cancer Cells. Journal of Cancer, 2015, 6, 1187-1194.	2.5	31
122	Enhanced survivin siRNA delivery using cationic liposome incorporating fatty acid-modified polyethylenimine. Chemical Research in Chinese Universities, 2015, 31, 401-405.	2.6	6
123	ROR1-targeted delivery of OSU-2S, a nonimmunosuppressive FTY720 derivative, exerts potent cytotoxicity in mantle-cell lymphoma inÂvitro and inÂvivo. Experimental Hematology, 2015, 43, 770-774.e2.	0.4	16
124	A novel reduction-sensitive modified polyethylenimine oligonucleotide vector. International Journal of Pharmaceutics, 2015, 484, 44-50.	5.2	5
125	Proliposomes containing a bile salt for oral delivery of Ginkgo biloba extract: Formulation optimization, characterization, oral bioavailability and tissue distribution in rats. European Journal of Pharmaceutical Sciences, 2015, 77, 254-264.	4.0	36
126	CD33-Targeted Lipid Nanoparticles (aCD33LNs) for Therapeutic Delivery of GTI-2040 to Acute Myelogenous Leukemia. Molecular Pharmaceutics, 2015, 12, 2010-2018.	4.6	23

#	Article	IF	CITATIONS
127	Fatty acid modified octa-arginine for delivery of siRNA. International Journal of Pharmaceutics, 2015, 495, 527-535.	5.2	32
128	Non-covalent complexes of folic acid and oleic acid conjugated polyethylenimine: An efficient vehicle for antisense oligonucleotide delivery. Colloids and Surfaces B: Biointerfaces, 2015, 135, 274-282.	5.0	14
129	Preparation and evaluation of a novel liposomal formulation of cisplatin. European Journal of Pharmaceutical Sciences, 2015, 66, 90-95.	4.0	17
130	Ultrasound-Targeted Microbubble Destruction (UTMD) Assisted Delivery of shRNA against PHD2 into H9C2 Cells. PLoS ONE, 2015, 10, e0134629.	2.5	14
131	A Novel Isoquinoline Derivative Anticancer Agent and Its Targeted Delivery to Tumor Cells Using Transferrin-Conjugated Liposomes. PLoS ONE, 2015, 10, e0136649.	2.5	56
132	Stimuli-Responsive Nanoparticles for siRNA Delivery. Current Pharmaceutical Design, 2015, 21, 4131-4144.	1.9	16
133	Non-covalent Nanocomplexes of Folic Acid and Reducible Polyethylenimine for Survivin siRNA Delivery. Anticancer Research, 2015, 35, 5433-41.	1.1	6
134	Antitumor activity of a novel survivin siRNA. Pakistan Journal of Pharmaceutical Sciences, 2015, 28, 1887-90.	0.2	1
135	A novel hydrolysis-resistant lipophilic folate derivative enables stable delivery of targeted liposomes in vivo. International Journal of Nanomedicine, 2014, 9, 4581.	6.7	15
136	Near infrared spectroscopic (NIRS) analysis of drug-loading rate and particle size of risperidone microspheres by improved chemometric model. International Journal of Pharmaceutics, 2014, 472, 296-303.	5.2	33
137	Enhanced antitumor efficacy of vitamin E TPGS-emulsified PLGA nanoparticles for delivery of paclitaxel. Colloids and Surfaces B: Biointerfaces, 2014, 123, 716-723.	5.0	43
138	A novel liposomal formulation of FTY720 (Fingolimod) for promising enhanced targeted delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 393-400.	3.3	34
139	A microfluidic method to synthesize transferrin-lipid nanoparticles loaded with siRNA LOR-1284 for therapy of acute myeloid leukemia. Nanoscale, 2014, 6, 9742.	5.6	90
140	Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery. Colloids and Surfaces B: Biointerfaces, 2014, 123, 345-363.	5.0	360
141	Insight into Mechanisms of Cellular Uptake of Lipid Nanoparticles and Intracellular Release of Small RNAs. Pharmaceutical Research, 2014, 31, 2685-2695.	3.5	52
142	Quantification of OSU-2S, a novel derivative of FTY720, in mouse plasma by liquid chromatography–tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2014, 98, 160-165.	2.8	4
143	Targeted Lipid Nanoparticles for Antisense Oligonucleotide Delivery. Current Pharmaceutical Biotechnology, 2014, 15, 847-855.	1.6	20
144	Proteinase K-containing lipid nanoparticles for therapeutic delivery of siRNA LOR-1284. Anticancer Research, 2014, 34, 3531-5.	1.1	2

#	Article	IF	CITATIONS
145	Enhanced hepatic delivery of siRNA and microRNA using oleic acid based lipid nanoparticle formulations. Journal of Controlled Release, 2013, 172, 690-698.	9.9	76
146	Comparative cellular pharmacokinetics and pharmacodynamics of siRNA delivery by SPANosomes and by cationic liposomes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 504-513.	3.3	25
147	Development of liposomal Ginsenoside Rg3: Formulation optimization and evaluation of its anticancer effects. International Journal of Pharmaceutics, 2013, 450, 250-258.	5.2	46
148	Cationic lipid nanoparticles for therapeutic delivery of siRNA and miRNA to murine liver tumor. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 1169-1180.	3.3	125
149	Human serum albumin-coated lipid nanoparticles for delivery of siRNA to breast cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 122-129.	3.3	44
150	A Polyethylenimine-Linoleic Acid Conjugate for Antisense Oligonucleotide Delivery. BioMed Research International, 2013, 2013, 1-7.	1.9	48
151	Targeted Delivery of <i>microRNA-29b</i> by Transferrin-Conjugated Anionic Lipopolyplex Nanoparticles: A Novel Therapeutic Strategy in Acute Myeloid Leukemia. Clinical Cancer Research, 2013, 19, 2355-2367.	7.0	170
152	Targeted nanoparticle delivery overcomes off-target immunostimulatory effects of oligonucleotides and improves therapeutic efficacy in chronic lymphocytic leukemia. Blood, 2013, 121, 136-147.	1.4	63
153	Tumor Antigen ROR1 Targeted Delivery Of FTY720 Derivative OSU-2S Prolongs Survival In ROR1 Engineered Mouse Model Of Chronic Lymphocytic Leukemia. Blood, 2013, 122, 4168-4168.	1.4	1
154	Lactosylated liposomes for targeted delivery of doxorubicin to hepatocellular carcinoma. International Journal of Nanomedicine, 2012, 7, 5465.	6.7	59
155	Novel lipoidal amine-based nanocarrier formulations for siRNA delivery. Therapeutic Delivery, 2012, 3, 715-723.	2.2	3
156	Clinical translation of folate receptor-targeted therapeutics. Expert Opinion on Drug Delivery, 2012, 9, 901-908.	5.0	76
157	Intranuclear Delivery of a Novel Antibody-Derived Radiosensitizer Targeting the DNA-Dependent Protein Kinase Catalytic Subunit. International Journal of Radiation Oncology Biology Physics, 2012, 83, 1023-1030.	0.8	18
158	Efficient siRNA Delivery Using a Polyamidoamine Dendrimer with a Modified Pentaerythritol Core. Pharmaceutical Research, 2012, 29, 1627-1636.	3.5	29
159	SPANosomes as Delivery Vehicles for Small Interfering RNA (siRNA). Molecular Pharmaceutics, 2012, 9, 201-210.	4.6	36
160	Differential efficacy of DOTAP enantiomers for siRNA delivery in vitro. International Journal of Pharmaceutics, 2012, 430, 328-334.	5.2	16
161	Lipid nanoparticles for hepatic delivery of small interfering RNA. Biomaterials, 2012, 33, 5924-5934.	11.4	59
162	Therapeutic Targeting of the RAS-Pathway by Synthetic Mir-181a Nanoparticles in Acute Myeloid Leukemia (AML) Blood, 2012, 120, 2422-2422.	1.4	1

#	Article	IF	CITATIONS
163	Enhanced siRNA delivery using oleic acid derivative of polyethylenimine. Anticancer Research, 2012, 32, 1267-71.	1.1	9
164	A Covalently Stabilized Lipidâ^'Polycationâ^'DNA (sLPD) Vector for Antisense Oligonucleotide Delivery. Molecular Pharmaceutics, 2011, 8, 709-715.	4.6	12
165	Preparation, therapeutic efficacy and intratumoral localization of targeted daunorubicin liposomes conjugating folate-PEG-CHEMS. Biomedicine and Pharmacotherapy, 2011, 65, 2-8.	5.6	48
166	Liposomes Containing (-)-Gossypol-Enriched Cottonseed Oil Suppress Bcl-2 and Bcl-xL Expression in Breast Cancer Cells. Pharmaceutical Research, 2011, 28, 3256-3264.	3.5	15
167	Synthesis of transferrin (Tf) conjugated liposomes via Staudinger ligation. International Journal of Pharmaceutics, 2011, 404, 205-210.	5.2	21
168	Delivery of calf thymus DNA to tumor by folate receptor targeted cationic liposomes. Biomaterials, 2011, 32, 6614-6620.	11.4	17
169	Targeted Delivery of MicroRNA-29b by Nanoparticles Provides Antileukemic Activity and Increases Sensitivity to the Hypomethylating Agent Decitabine (DAC) in Acute Myeloid Leukemia (AML). Blood, 2011, 118, 81-81.	1.4	0
170	Microfluidic assembly of lipid-based oligonucleotide nanoparticles. Anticancer Research, 2011, 31, 771-6.	1.1	17
171	Synthesis and evaluation of a novel lipophilic folate receptor targeting ligand. Anticancer Research, 2011, 31, 1521-5.	1.1	19
172	Efficient down-regulation of CDK4 by novel lipid nanoparticle-mediated siRNA delivery. Anticancer Research, 2011, 31, 1619-26.	1.1	26
173	Delivery of antisense oligodeoxyribonucleotide lipopolyplex nanoparticles assembled by microfluidic hydrodynamic focusing. Journal of Controlled Release, 2010, 141, 62-69.	9.9	80
174	Preparation and characterization of folate-poly(ethylene glycol)-grafted-trimethylchitosan for intracellular transport of protein through folate receptor-mediated endocytosis. Journal of Biotechnology, 2010, 145, 47-53.	3.8	25
175	Transferrin-conjugated lipid-coated PLGA nanoparticles for targeted delivery of aromatase inhibitor 7α-APTADD to breast cancer cells. International Journal of Pharmaceutics, 2010, 390, 234-241.	5.2	123
176	Lipid-coated nano-calcium-phosphate (LNCP) for gene delivery. International Journal of Pharmaceutics, 2010, 392, 201-208.	5.2	58
177	Targeting human clonogenic acute myelogenous leukemia cells via folate conjugated liposomes combined with receptor modulation by all-trans retinoic acid. International Journal of Pharmaceutics, 2010, 402, 57-63.	5.2	19
178	Targeted nanoparticles enhanced flow electroporation of antisense oligonucleotides in leukemia cells. Biosensors and Bioelectronics, 2010, 26, 778-783.	10.1	40
179	Targeted Delivery of Antisense Oligodeoxynucleotide by Transferrin Conjugated pH-Sensitive Lipopolyplex Nanoparticles: A Novel Oligonucleotide-Based Therapeutic Strategy in Acute Myeloid Leukemia. Molecular Pharmaceutics, 2010, 7, 196-206.	4.6	38
180	Receptor-targeted nanocarriers for therapeutic delivery to cancer. Molecular Membrane Biology, 2010, 27, 286-298.	2.0	285

#	Article	IF	CITATIONS
181	Folate-Immunoglobulin G as an Anticancer Therapeutic Antibody. Bioconjugate Chemistry, 2010, 21, 961-968.	3.6	17
182	Liposomal Targeted Delivery Overcomes Immunostimulatory Effects of Oligonucleotide Based Therapy In Chronic Lymphocytic Leukemia Blood, 2010, 116, 1475-1475.	1.4	3
183	Disulfide-linked liposomes: effective delivery vehicle for Bcl-2 antisense oligodeoxyribonucleotide G3139. Anticancer Research, 2010, 30, 31-7.	1.1	4
184	Transferrin Receptor Targeted Lipopolyplexes for Delivery of Antisense Oligonucleotide G3139 in a Murine K562 Xenograft Model. Pharmaceutical Research, 2009, 26, 1516-1524.	3.5	38
185	A novel liposomal formulation of flavopiridol. International Journal of Pharmaceutics, 2009, 365, 170-174.	5.2	43
186	Targeted Delivery Systems for Oligonucleotide Therapeutics. AAPS Journal, 2009, 11, 195-203.	4.4	132
187	Transferrin Receptor-Targeted Lipid Nanoparticles for Delivery of an Antisense Oligodeoxyribonucleotide against Bcl-2. Molecular Pharmaceutics, 2009, 6, 221-230.	4.6	86
188	Antitumor Activity of G3139 Lipid Nanoparticles (LNPs). Molecular Pharmaceutics, 2009, 6, 211-220.	4.6	29
189	Efficient Delivery of Antisense Oligodeoxyribonucleotide G3139 by Human Serum Albumin-Coated Liposomes. Molecular Pharmaceutics, 2009, 6, 1848-1855.	4.6	23
190	Microfluidic Methods for Production of Liposomes. Methods in Enzymology, 2009, 465, 129-141.	1.0	113
191	Preparation, Characterization and Pharmacokinetics of Folate Receptor-Targeted Liposomes for Docetaxel Delivery. Journal of Nanoscience and Nanotechnology, 2009, 9, 2155-2161.	0.9	37
192	Immunoliposomes Incorporated with Humanized Monoclonal Antibody, Milatuzumab, Induce Cell Death in CLL by Retention of the CD74 Receptor On the Surface of B Cells Blood, 2009, 114, 721-721.	1.4	4
193	Liposomal Coencapsulated Fludarabine and Mitoxantrone for Lymphoproliferative Disorder Treatment**Xiaobin Zhao and Jianmei Wu contributed equally to this study Journal of Pharmaceutical Sciences, 2008, 97, 1508-1518.	3.3	17
194	Synthesis and evaluation of a novel ligand for folate-mediated targeting liposomes. International Journal of Pharmaceutics, 2008, 356, 29-36.	5.2	113
195	Cationic lipid-coated magnetic nanoparticles associated with transferrin for gene delivery. International Journal of Pharmaceutics, 2008, 358, 263-270.	5.2	75
196	Targeted drug delivery via folate receptors. Expert Opinion on Drug Delivery, 2008, 5, 309-319.	5.0	296
197	A Novel Raji-Burkitt's Lymphoma Model for Preclinical and Mechanistic Evaluation of CD52-Targeted Immunotherapeutic Agents. Clinical Cancer Research, 2008, 14, 569-578.	7.0	26
198	Lenalidomide down-regulates the CD20 antigen and antagonizes direct and antibody-dependent cellular cytotoxicity of rituximab on primary chronic lymphocytic leukemia cells. Blood, 2008, 112, 5180-5189.	1.4	114

#	Article	IF	CITATIONS
199	Viral, Nonviral, and Physical Methods for Gene Delivery. , 2008, , 141-173.		0
200	A liposomal delivery vehicle for the anticancer agent gossypol. Anticancer Research, 2008, 28, 2801-5.	1.1	18
201	Lipid-Based Nanoparticulate Drug Delivery Systems. Drugs and the Pharmaceutical Sciences, 2007, , 89-98.	0.1	3
202	Imaging Receptor-Mediated Endocytosis with a Polymeric Nanoparticle-Based Coherent Anti-Stokes Raman Scattering Probe. Journal of Physical Chemistry B, 2007, 111, 9980-9985.	2.6	36
203	Synthesis of Cetuximab-Immunoliposomes via a Cholesterol-Based Membrane Anchor for Targeting of EGFR. Bioconjugate Chemistry, 2007, 18, 101-108.	3.6	125
204	Role of Formulation Composition in Folate Receptor-Targeted Liposomal Doxorubicin Delivery to Acute Myelogenous Leukemia Cells. Molecular Pharmaceutics, 2007, 4, 707-712.	4.6	47
205	Cholesterol as a bilayer anchor for PEGylation and targeting ligand in folateâ€receptorâ€targeted liposomes. Journal of Pharmaceutical Sciences, 2007, 96, 2424-2435.	3.3	71
206	Construction of anti-EGFR immunoliposomes via folate–folate binding protein affinity. International Journal of Pharmaceutics, 2007, 336, 276-283.	5.2	30
207	Vascular targeting of doxorubicin using cationic liposomes. International Journal of Pharmaceutics, 2007, 337, 329-335.	5.2	81
208	Neutron Capture Therapy of Cancer. , 2006, , 77-103.		1
208 209	Neutron Capture Therapy of Cancer. , 2006, , 77-103. Folate Receptor-Targeted Liposomes for Cancer Therapy. , 2006, , 663-675.		1 0
		5.2	
209	Folate Receptor-Targeted Liposomes for Cancer Therapy. , 2006, , 663-675. A folate receptor-targeted liposomal formulation for paclitaxel. International Journal of	5.2 9.9	0
209 210	 Folate Receptor-Targeted Liposomes for Cancer Therapy., 2006, 663-675. A folate receptor-targeted liposomal formulation for paclitaxel. International Journal of Pharmaceutics, 2006, 316, 148-153. Efficient delivery of a Bcl-2-specific antisense oligodeoxyribonucleotide (G3139) via transferrin 		0 194
209 210 211	 Folate Receptor-Targeted Liposomes for Cancer Therapy. , 2006, , 663-675. A folate receptor-targeted liposomal formulation for paclitaxel. International Journal of Pharmaceutics, 2006, 316, 148-153. Efficient delivery of a Bcl-2-specific antisense oligodeoxyribonucleotide (G3139) via transferrin receptor-targeted liposomes. Journal of Controlled Release, 2006, 112, 199-207. Liposomal delivery as a mechanism to enhance synergism between anticancer drugs. Molecular Cancer 	9.9	0 194 91
209 210 211 212	 Folate Receptor-Targeted Liposomes for Cancer Therapy. , 2006, , 663-675. A folate receptor-targeted liposomal formulation for paclitaxel. International Journal of Pharmaceutics, 2006, 316, 148-153. Efficient delivery of a Bcl-2-specific antisense oligodeoxyribonucleotide (G3139) via transferrin receptor-targeted liposomes. Journal of Controlled Release, 2006, 112, 199-207. Liposomal delivery as a mechanism to enhance synergism between anticancer drugs. Molecular Cancer Therapeutics, 2006, 5, 1639-1640. NK Cells Contribute Significantly to the Innate Immune Effector Role of CD37-Specific SMIP in CLL and 	9.9 4.1	0 194 91 18
209 210 211 212 212	Folate Receptor-Targeted Liposomes for Cancer Therapy. , 2006, , 663-675. A folate receptor-targeted liposomal formulation for paclitaxel. International Journal of Pharmaceutics, 2006, 316, 148-153. Efficient delivery of a Bcl-2-specific antisense oligodeoxyribonucleotide (C3139) via transferrin receptor-targeted liposomes. Journal of Controlled Release, 2006, 112, 199-207. Liposomal delivery as a mechanism to enhance synergism between anticancer drugs. Molecular Cancer Therapeutics, 2006, 5, 1639-1640. NK Cells Contribute Significantly to the Innate Immune Effector Role of CD37-Specific SMIP in CLL and NHL Blood, 2006, 108, 135-135. Efficient delivery of an antisense oligodeoxyribonucleotide formulated in folate receptor-targeted	9.9 4.1 1.4	0 194 91 18 3

#	Article	IF	CITATIONS
217	Tumor-targeted gene delivery via anti-HER2 antibody (trastuzumab, Herceptin®) conjugated polyethylenimine. Journal of Controlled Release, 2004, 97, 357-369.	9.9	138
218	Tumor-selective targeted delivery of genes and antisense oligodeoxyribonucleotides via the folate receptor. Advanced Drug Delivery Reviews, 2004, 56, 1193-1204.	13.7	147
219	A Folate Receptor?Targeted Lipid Nanoparticle Formulation for a Lipophilic Paclitaxel Prodrug. Pharmaceutical Research, 2004, 21, 2153-2157.	3.5	137
220	Tumour-selective drug delivery via folate receptor-targeted liposomes. Expert Opinion on Drug Delivery, 2004, 1, 7-17.	5.0	60
221	Novel Anti-CD37 Small Modular Immunopharmaceutical (SMIP) Induces B-Cell-Specific, Caspase-Independent Apoptosis in Human CLL Cells Blood, 2004, 104, 2515-2515.	1.4	1
222	Synthesis and evaluation of a hematoporphyrin derivative in a folate receptor-targeted solid-lipid nanoparticle formulation. Anticancer Research, 2004, 24, 161-5.	1.1	35
223	Antitumor activity of folate receptor-targeted liposomal doxorubicin in a KB oral carcinoma murine xenograft model. Pharmaceutical Research, 2003, 20, 417-422.	3.5	107
224	Receptor induction and targeted drug delivery: a new antileukaemia strategy. Expert Opinion on Biological Therapy, 2003, 3, 563-574.	3.1	33
225	Synthesis and Biological Evaluation of Folate Receptor-Targeted Boronated PAMAM Dendrimers as Potential Agents for Neutron Capture Therapy. Bioconjugate Chemistry, 2003, 14, 158-167.	3.6	152
226	Folate receptor-targeted liposomes as possible delivery vehicles for boron neutron capture therapy. Anticancer Research, 2003, 23, 3341-5.	1.1	35
227	A folate receptor-targeted emulsion formulation for paclitaxel. Anticancer Research, 2003, 23, 4927-31.	1.1	17
228	Strategy for the treatment of acute myelogenous leukemia based on folate receptor β–targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid. Blood, 2002, 100, 594-602.	1.4	185
229	Boron-Containing Folate Receptor-Targeted Liposomes as Potential Delivery Agents for Neutron Capture Therapy. Bioconjugate Chemistry, 2002, 13, 435-442.	3.6	87
230	Folate receptor-targeted liposomes as vectors for therapeutic agents. Biotechnology Annual Review, 2002, 8, 103-131.	2.1	39
231	A novel pH-sensitive liposome formulation containing oleyl alcohol. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1564, 31-37.	2.6	121
232	Incorporation of Reversibly Cross-Linked Polyplexes into LPDII Vectors for Gene Delivery. Bioconjugate Chemistry, 2002, 13, 1044-1053.	3.6	54
233	Efficient intracellular drug and gene delivery using folate receptor-targeted pH-sensitive liposomes composed of cationic/anionic lipid combinations. Journal of Controlled Release, 2002, 80, 309-319.	9.9	185
234	Characterization of a novel diolein-based LPDII vector for gene delivery. Journal of Controlled Release, 2002, 83, 121-132.	9.9	38

#	Article	IF	CITATIONS
235	Folate receptor-mediated liposomal delivery of a lipophilic boron agent to tumor cells in vitro for neutron capture therapy. Pharmaceutical Research, 2002, 19, 1502-1508.	3.5	30
236	Boron delivery to a murine lung carcinoma using folate receptor-targeted liposomes. Anticancer Research, 2002, 22, 1629-33.	1.1	30
237	Folate receptor targeted delivery of liposomal daunorubicin into tumor cells. Anticancer Research, 2002, 22, 2131-5.	1.1	56
238	Efficient Gene Transfer Using Reversibly Cross-Linked Low Molecular Weight Polyethylenimine. Bioconjugate Chemistry, 2001, 12, 989-994.	3.6	444
239	Efficient gene delivery via non-covalent complexes of folic acid and polyethylenimine. Journal of Controlled Release, 2001, 77, 131-138.	9.9	70
240	Targeted drug delivery via the folate receptor. Advanced Drug Delivery Reviews, 2000, 41, 147-162.	13.7	1,300
241	Efficient Gene Delivery Using Anionic Liposome-Complexed Polyplexes (LPDII). Bioscience Reports, 2000, 20, 419-432.	2.4	49
242	Targeted Gene Delivery via the Folate Receptor. ACS Symposium Series, 2000, , 212-219.	0.5	0
243	Receptor-Specific Delivery of Liposomes Via Folate-Peg-Chol. Journal of Liposome Research, 2000, 10, 179-195.	3.3	73
244	Receptor-targeted gene delivery viafolate-conjugated polyethylenimine. AAPS PharmSci, 1999, 1, 20-26.	1.3	92
245	The Effects of pH and Intraliposomal Buffer Strength on the Rate of Liposome Content Release and Intracellular Drug Delivery. Bioscience Reports, 1998, 18, 69-78.	2.4	86
246	Folate-Targeted Liposomes for Drug Delivery. Journal of Liposome Research, 1997, 7, 455-466.	3.3	31
247	Lipidic Vector Systems for Gene Transfer. Critical Reviews in Therapeutic Drug Carrier Systems, 1997, 14, 34.	2.2	130
248	Synthesis, Purification, and Tumor Cell Uptake of67Ga-Deferoxamineâ^'Folate, a Potential Radiopharmaceutical for Tumor Imaging. Bioconjugate Chemistry, 1996, 7, 56-62.	3.6	235
249	Folate-targeted, Anionic Liposome-entrapped Polylysine-condensed DNA for Tumor Cell-specific Gene Transfer. Journal of Biological Chemistry, 1996, 271, 8481-8487.	3.4	376
250	Measurement of endosome pH following folate receptor-mediated endocytosis. Biochimica Et Biophysica Acta - Molecular Cell Research, 1996, 1312, 237-242.	4.1	209
251	Peptide-Mediated Release of Folate-Targeted Liposome Contents from Endosomal Compartments1. Journal of the American Chemical Society, 1996, 118, 1581-1586.	13.7	90
252	Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1233, 134-144.	2.6	503