
## Qinghua Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5258490/publications.pdf Version: 2024-02-01



Оілснил Ши

| #  | Article                                                                                                                                                                                             | IF                | CITATIONS          |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 1  | Hypothesis: JNK signaling is a therapeutic target of neurodegenerative diseases. Alzheimer's and Dementia, 2022, 18, 152-158.                                                                       | 0.4               | 22                 |
| 2  | Signal transducer and activator of transcription 3 signaling in tumor immune evasion. , 2022, 230, 107969.                                                                                          |                   | 28                 |
| 3  | Cytochrome P450 enzymes mediated by DNA methylation is involved in deoxynivalenol-induced hepatoxicity in piglets. Animal Nutrition, 2022, 9, 269-279.                                              | 2.1               | 7                  |
| 4  | Phytoremediation of heavy metal pollution: Hotspots and future prospects. Ecotoxicology and Environmental Safety, 2022, 234, 113403.                                                                | 2.9               | 47                 |
| 5  | Toxic mechanisms of the trichothecenes T-2 toxin and deoxynivalenol on protein synthesis. Food and Chemical Toxicology, 2022, 164, 113044.                                                          | 1.8               | 14                 |
| 6  | Hypoxia-inducible factors: master regulators of hypoxic tumor immune escape. Journal of Hematology and Oncology, 2022, 15, .                                                                        | 6.9               | 112                |
| 7  | Glucose-Dependent Insulinotropic Polypeptide and Substance P Mediate Emetic Response Induction by<br>Masked Trichothecene Deoxynivalenol-3-Glucoside through Ca2+ Signaling. Toxins, 2022, 14, 371. | 1.5               | 1                  |
| 8  | Deoxynivalenol and its modified forms: key enzymes, inter-individual and interspecies differences in metabolism. Drug Metabolism Reviews, 2022, 54, 331-342.                                        | 1.5               | 1                  |
| 9  | Diverse roles of long nonâ€coding RNAs in viral diseases. Reviews in Medical Virology, 2021, 31, e2198.                                                                                             | 3.9               | 16                 |
| 10 | The role of hypoxiaâ€inducible factor 1 in tumor immune evasion. Medicinal Research Reviews, 2021, 41,<br>1622-1643.                                                                                | 5.0               | 157                |
| 11 | Spirulina. , 2021, , 959-974.                                                                                                                                                                       |                   | 7                  |
| 12 | The trichothecene neosolaniol stimulates an emetic response through neuropeptide Y2 and serotonin<br>3 receptors in mink. Toxicology, 2021, 452, 152718.                                            | 2.0               | 1                  |
| 13 | Hypoxia, oxidative stress, and immune evasion: a trinity of the trichothecenes T-2 toxin and deoxynivalenol (DON). Archives of Toxicology, 2021, 95, 1899-1915.                                     | 1.9               | 42                 |
| 14 | Back Cover Image, Volume 41, Issue 3. Medicinal Research Reviews, 2021, 41, iv.                                                                                                                     | 5.0               | 0                  |
| 15 | Biomarkers of deoxynivalenol (DON) and its modified form DON-3-glucoside (DON-3G) in humans.<br>Trends in Food Science and Technology, 2021, 110, 551-558.                                          | 7.8               | 14                 |
| 16 | PPAR-Î <sup>3</sup> with its anti-fibrotic action could serve as an effective therapeutic target in T-2 toxin-induced cardiac fibrosis of rats. Food and Chemical Toxicology, 2021, 152, 112183.    | 1.8               | 12                 |
| 17 | Combined Effect of Deoxynivalenol (DON) and Porcine Circovirus Type 2 (Pcv2) on Inflammatory<br>Cytokine mRNA Expression. Toxins, 2021, 13, 422.                                                    | 1.5               | 5                  |
| 18 | New Determination Methods, Toxic Mechanisms, and Control Strategies (Preface to the special issue) Tj ETQqC                                                                                         | 0 0 rgBT /<br>1.8 | Overlock 10 T<br>0 |

Toxicology, 2021, 155, 112436.

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Hypothesis: Long non-coding RNA is a potential target of mycotoxins. Food and Chemical Toxicology, 2021, 155, 112397.                                                                                               | 1.8 | 5         |
| 20 | From hypoxia and hypoxia-inducible factors (HIF) to oxidative stress: A new understanding of the toxic mechanism of mycotoxins. Food and Chemical Toxicology, 2020, 135, 110968.                                    | 1.8 | 35        |
| 21 | The neurotoxicity of trichothecenes T-2 toxin and deoxynivalenol (DON): Current status and future perspectives. Food and Chemical Toxicology, 2020, 145, 111676.                                                    | 1.8 | 41        |
| 22 | Epigenetic upregulation of galanin-like peptide mediates deoxynivalenol induced-growth inhibition in pituitary cells. Toxicology and Applied Pharmacology, 2020, 403, 115166.                                       | 1.3 | 6         |
| 23 | Malus domestica: A Review on Nutritional Features, Chemical Composition, Traditional and Medicinal Value. Plants, 2020, 9, 1408.                                                                                    | 1.6 | 61        |
| 24 | An update on T-2 toxin and its modified forms: metabolism, immunotoxicity mechanism, and human exposure assessment. Archives of Toxicology, 2020, 94, 3645-3669.                                                    | 1.9 | 50        |
| 25 | Antidotal Potency of the Novel, Structurally Different Adsorbents in Rats Acutely Intoxicated with the T-2 Toxin. Toxins, 2020, 12, 643.                                                                            | 1.5 | 7         |
| 26 | Phenytoin – An anti-seizure drug: Overview of its chemistry, pharmacology and toxicology. Food and<br>Chemical Toxicology, 2020, 142, 111393.                                                                       | 1.8 | 43        |
| 27 | Anorexic responses to trichothecene deoxynivalenol and its congeners correspond to secretion of tumor necrosis factor-α and interleukin-1β. Environmental Toxicology and Pharmacology, 2020, 77, 103371.            | 2.0 | 5         |
| 28 | Cardiomyopathy induced by T-2 toxin in rats. Food and Chemical Toxicology, 2020, 137, 111138.                                                                                                                       | 1.8 | 19        |
| 29 | Selective inhibitors for JNK signalling: a potential targeted therapy in cancer. Journal of Enzyme<br>Inhibition and Medicinal Chemistry, 2020, 35, 574-583.                                                        | 2.5 | 96        |
| 30 | MiR-155-5p plays as a "janus―in the expression of inflammatory cytokines induced by T-2 toxin. Food and<br>Chemical Toxicology, 2020, 140, 111258.                                                                  | 1.8 | 11        |
| 31 | Effects of Montmorillonite on Growth Performance, Serum Biochemistry and Oxidative Stress of<br>Red-Crowned Crane (Grus japonensis) Fed Mycotoxin-Contaminated Feed. Current Drug Metabolism,<br>2020, 21, 626-632. | 0.7 | 1         |
| 32 | DNA methylation and RASSF4 expression are involved in T-2 toxin-induced hepatotoxicity. Toxicology, 2019, 425, 152246.                                                                                              | 2.0 | 18        |
| 33 | Efficacy of methylprednisolone on T-2 toxin-induced cardiotoxicity in vivo: A pathohistological study.<br>Environmental Toxicology and Pharmacology, 2019, 71, 103221.                                              | 2.0 | 13        |
| 34 | Roles of microRNAs and prospective view of competing endogenous RNAs in mycotoxicosis. Mutation<br>Research - Reviews in Mutation Research, 2019, 782, 108285.                                                      | 2.4 | 6         |
| 35 | DNA methylation is involved in pro-inflammatory cytokines expression in T-2 toxin-induced liver injury.<br>Food and Chemical Toxicology, 2019, 132, 110661.                                                         | 1.8 | 27        |
| 36 | Metabolic Pathway of Cyclosporine A and Its Correlation with Nephrotoxicity. Current Drug<br>Metabolism, 2019, 20, 84-90.                                                                                           | 0.7 | 24        |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Jatropha gossypiifolia L. and its biologically active metabolites: A mini review. Journal of<br>Ethnopharmacology, 2019, 234, 197-203.                                                         | 2.0 | 19        |
| 38 | Effects of thermal processing methods and simulated digestion on the phenolic content and antioxidant activity of lotus leaves. Journal of Food Processing and Preservation, 2019, 43, e13869. | 0.9 | 7         |
| 39 | Determination of Kanamycin by High Performance Liquid Chromatography. Molecules, 2019, 24, 1902.                                                                                               | 1.7 | 64        |
| 40 | Mitochondrion: A new molecular target and potential treatment strategies against trichothecenes.<br>Trends in Food Science and Technology, 2019, 88, 33-45.                                    | 7.8 | 14        |
| 41 | JNK signaling in cancer cell survival. Medicinal Research Reviews, 2019, 39, 2082-2104.                                                                                                        | 5.0 | 182       |
| 42 | Mequindox induces apoptosis, DNA damage, and carcinogenicity in Wistar rats. Food and Chemical<br>Toxicology, 2019, 127, 270-279.                                                              | 1.8 | 8         |
| 43 | Inside Cover Image, Volume 39, Issue 6. Medicinal Research Reviews, 2019, 39, ii.                                                                                                              | 5.0 | 0         |
| 44 | An overview of epigenetic agents and natural nutrition products targeting DNA methyltransferase,<br>histone deacetylases and microRNAs. Food and Chemical Toxicology, 2019, 123, 574-594.      | 1.8 | 34        |
| 45 | The epigenetic mechanisms in Fusarium mycotoxins induced toxicities. Food and Chemical Toxicology, 2019, 123, 595-601.                                                                         | 1.8 | 35        |
| 46 | Experimental hydrophilic reactivator: bisoxime with three positive charges. Chemical Papers, 2019, 73, 777-782.                                                                                | 1.0 | 6         |
| 47 | Statins: Adverse reactions, oxidative stress and metabolic interactions. , 2019, 195, 54-84.                                                                                                   |     | 87        |
| 48 | Antimicrobial Peptides: Amphibian Host Defense Peptides. Current Medicinal Chemistry, 2019, 26,<br>5924-5946.                                                                                  | 1.2 | 60        |
| 49 | Beauvericin, A Fusarium Mycotoxin: Anticancer Activity, Mechanisms, and Human Exposure Risk<br>Assessment. Mini-Reviews in Medicinal Chemistry, 2019, 19, 206-214.                             | 1.1 | 19        |
| 50 | Brain damage and neurological symptoms induced by T-2 toxin in rat brain. Toxicology Letters, 2018, 286, 96-107.                                                                               | 0.4 | 48        |
| 51 | The critical role of p16/Rb pathway in the inhibition of GH3 cell cycle induced by T-2 toxin. Toxicology, 2018, 400-401, 28-39.                                                                | 2.0 | 32        |
| 52 | Palytoxin congeners. Archives of Toxicology, 2018, 92, 143-156.                                                                                                                                | 1.9 | 27        |
| 53 | A Review on the Synthesis and Bioactivity Aspects of Beauvericin, a Fusarium Mycotoxin. Frontiers in<br>Pharmacology, 2018, 9, 1338.                                                           | 1.6 | 62        |
| 54 | Insect Antimicrobial Peptides, a Mini Review. Toxins, 2018, 10, 461.                                                                                                                           | 1.5 | 337       |

| #  | Article                                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Tetramethylenedisulfotetramine: A Health Risk Compound and a Potential Chemical Warfare Agent.<br>Toxics, 2018, 6, 51.                                                                                                                                                                                   | 1.6 | 12        |
| 56 | Immune Evasion, a Potential Mechanism of Trichothecenes: New Insights into Negative Immune<br>Regulations. International Journal of Molecular Sciences, 2018, 19, 3307.                                                                                                                                  | 1.8 | 23        |
| 57 | Simple and Label-Free Fluorescent Detection of Melamine Based on Melamine–Thymine Recognition.<br>Sensors, 2018, 18, 2968.                                                                                                                                                                               | 2.1 | 6         |
| 58 | Mechanism of cyclosporine A nephrotoxicity: Oxidative stress, autophagy, and signalings. Food and Chemical Toxicology, 2018, 118, 889-907.                                                                                                                                                               | 1.8 | 94        |
| 59 | Synthesis, Biological Evaluation, and Docking Studies of Novel Bisquaternary Aldoxime Reactivators on Acetylcholinesterase and Butyrylcholinesterase Inhibited by Paraoxon. Molecules, 2018, 23, 1103.                                                                                                   | 1.7 | 11        |
| 60 | Oxime K033-Reactivation Activity of Cholinesterases Inhibited by Various Nerve Agents and Organophosphorus Pesticides. Letters in Drug Design and Discovery, 2018, 15, 1124-1130.                                                                                                                        | 0.4 | 2         |
| 61 | Nitric oxide (NO)-mediated mitochondrial damage plays a critical role in T-2 toxin-induced apoptosis and growth hormone deficiency in rat anterior pituitary GH3 cells. Food and Chemical Toxicology, 2017, 102, 11-23.                                                                                  | 1.8 | 45        |
| 62 | Mechanism of deoxynivalenol effects on the reproductive system and fetus malformation: Current status and future challenges. Toxicology in Vitro, 2017, 41, 150-158.                                                                                                                                     | 1.1 | 39        |
| 63 | PKA/CREB and NF-κB pathway regulates AKNA transcription: A novel insight into T-2 toxin-induced inflammation and GH deficiency in GH3 cells. Toxicology, 2017, 392, 81-95.                                                                                                                               | 2.0 | 31        |
| 64 | Trichothecenes: immunomodulatory effects, mechanisms, and anti-cancer potential. Archives of Toxicology, 2017, 91, 3737-3785.                                                                                                                                                                            | 1.9 | 91        |
| 65 | Fate of deoxynivalenol and deoxynivalenol-3-glucoside during cereal-based thermal food processing:<br>a review study. Mycotoxin Research, 2017, 33, 79-91.                                                                                                                                               | 1.3 | 70        |
| 66 | Antioxidant agents against trichothecenes: new hints for oxidative stress treatment. Oncotarget, 2017, 8, 110708-110726.                                                                                                                                                                                 | 0.8 | 58        |
| 67 | Metabolism and Disposition of Aditoprim in Swine, Broilers, Carp and Rats. Scientific Reports, 2016, 6, 20370.                                                                                                                                                                                           | 1.6 | 12        |
| 68 | The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview.<br>Archives of Toxicology, 2016, 90, 1817-1840.                                                                                                                                                           | 1.9 | 381       |
| 69 | Simultaneous determination of aditoprim and its three major metabolites in pigs, broilers and carp<br>tissues, and its application in tissue distribution and depletion studies. Food Additives and<br>Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2016, 33, 1-13. | 1.1 | 6         |
| 70 | Integrated Transcriptional and Proteomic Analysis of Growth Hormone Suppression Mediated by Trichothecene T-2 Toxin in Rat GH3 Cells. Toxicological Sciences, 2015, 147, 326-338.                                                                                                                        | 1.4 | 34        |
| 71 | Microbiological toxicity of tilmicosin on human colonic microflora in chemostats. Regulatory<br>Toxicology and Pharmacology, 2015, 73, 201-208.                                                                                                                                                          | 1.3 | 8         |
| 72 | DEOXYNIVALENOL, A TRICHOTHECENE MYCOTOXIN: REVIEW OF ITS MASKED FORM, CONTAMINATION IN<br>CEREAL-BASED FEED, AND MASS SPECTROMETRY ANALYTICAL METHODS. Military Medical Science Letters<br>(Vojenske Zdravotnicke Listy), 2015, 84, 104-114.                                                             | 0.2 | 0         |

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | The Role of <i>Six1</i> in the Genesis of Muscle Cell and Skeletal Muscle Development. International<br>Journal of Biological Sciences, 2014, 10, 983-989.                                 | 2.6 | 37        |
| 74 | Deoxynivalenol: signaling pathways and human exposure risk assessment—an update. Archives of<br>Toxicology, 2014, 88, 1915-1928.                                                           | 1.9 | 78        |
| 75 | Metabolism of aflatoxins: key enzymes and interindividual as well as interspecies differences. Archives of Toxicology, 2014, 88, 1635-1644.                                                | 1.9 | 184       |
| 76 | Crosstalk of JNK1-STAT3 is critical for RAW264.7 cell survival. Cellular Signalling, 2014, 26, 2951-2960.                                                                                  | 1.7 | 38        |
| 77 | Metabolic disposition and excretion of quinocetone in rats, pigs, broilers, and carp. Food and Chemical Toxicology, 2014, 69, 109-119.                                                     | 1.8 | 29        |
| 78 | Trichothecenes: Structure-Toxic Activity Relationships. Current Drug Metabolism, 2013, 14, 641-660.                                                                                        | 0.7 | 93        |
| 79 | Intestinal metabolism of T-2 toxin in the pig cecum model. Mycotoxin Research, 2012, 28, 191-198.                                                                                          | 1.3 | 24        |
| 80 | A comparison of hepaticin vitrometabolism of T-2 toxin in rats, pigs, chickens, and carp. Xenobiotica, 2011, 41, 863-873.                                                                  | 0.5 | 47        |
| 81 | Impact of Physicochemical Parameters on the Decomposition of Deoxynivalenol during Extrusion<br>Cooking of Wheat Grits. Journal of Agricultural and Food Chemistry, 2011, 59, 12480-12485. | 2.4 | 49        |
| 82 | Metabolic Pathways of Ochratoxin A. Current Drug Metabolism, 2011, 12, 1-10.                                                                                                               | 0.7 | 109       |
| 83 | Metabolic pathways of trichothecenes. Drug Metabolism Reviews, 2010, 42, 250-267.                                                                                                          | 1.5 | 161       |
| 84 | Biological degradation of aflatoxins. Drug Metabolism Reviews, 2009, 41, 1-7.                                                                                                              | 1.5 | 239       |
| 85 | Metabolic pathways of trichothecenes. Drug Metabolism Reviews, 2009, 00, 090814023620051-18.                                                                                               | 1.5 | 54        |