
Xianchang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5258484/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. Nature Medicine, 1999, 5, 1298-1302.	30.7	728
2	Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nature Medicine, 1999, 5, 1303-1307.	30.7	574
3	IL-15 and IL-2: a matter of life and death for T cells in vivo. Nature Medicine, 2001, 7, 114-118.	30.7	283
4	NK cells promote transplant tolerance by killing donor antigen-presenting cells. Journal of Experimental Medicine, 2006, 203, 1851-1858.	8.5	260
5	Natural killer cells promote immune tolerance by regulating inflammatory T _H 17 cells at the human maternal–fetal interface. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E231-40.	7.1	246
6	T Cell Death and Transplantation Tolerance. Immunity, 2001, 14, 407-416.	14.3	202
7	Costimulatory pathways in transplantation: challenges and new developments. Immunological Reviews, 2009, 229, 271-293.	6.0	189
8	Liver transplantation for locally advanced intrahepatic cholangiocarcinoma treated with neoadjuvant therapy: a prospective case-series. The Lancet Gastroenterology and Hepatology, 2018, 3, 337-348.	8.1	189
9	Identification of a role for TRIM29 in the control of innate immunity in the respiratory tract. Nature Immunology, 2016, 17, 1373-1380.	14.5	151
10	Diversity and Emerging Roles of Enhancer RNA in Regulation of Gene Expression and Cell Fate. Frontiers in Cell and Developmental Biology, 2019, 7, 377.	3.7	141
11	Stimulating PD-1???negative signals concurrent with blocking CD154 co-stimulation induces long-term islet allograft survival1. Transplantation, 2003, 76, 994-999.	1.0	140
12	An update on regulatory T cells in transplant tolerance and rejection. Nature Reviews Nephrology, 2010, 6, 577-583.	9.6	114
13	Promotion of cutaneous wound healing by local application of mesenchymal stem cells derived from human umbilical cord blood. Wound Repair and Regeneration, 2010, 18, 506-513.	3.0	105
14	Natural CD8+CD122+ T Cells Are More Potent in Suppression of Allograft Rejection Than CD4+CD25+ Regulatory T Cells. American Journal of Transplantation, 2014, 14, 39-48.	4.7	98
15	PIRs mediate innate myeloid cell memory to nonself MHC molecules. Science, 2020, 368, 1122-1127.	12.6	92
16	New Insights on OX40 in the Control of T Cell Immunity and Immune Tolerance In Vivo. Journal of Immunology, 2012, 188, 892-901.	0.8	88
17	Innate NK Cells and Macrophages Recognize and Reject Allogeneic Nonself In Vivo via Different Mechanisms. Journal of Immunology, 2012, 188, 2703-2711.	0.8	81
18	Heme oxygenaseâ€1 modulates the alloâ€immune response by promoting activationâ€induced cell death of T cells. FASEB Journal, 2005, 19, 1-22.	0.5	79

#	Article	IF	CITATIONS
19	Frontiers in Nephrology. Journal of the American Society of Nephrology: JASN, 2007, 18, 2252-2261.	6.1	79
20	OX40 Costimulation Inhibits Foxp3 Expression and Treg Induction via BATF3-Dependent and Independent Mechanisms. Cell Reports, 2018, 24, 607-618.	6.4	79
21	Ablation of Transcription Factor IRF4 Promotes Transplant Acceptance by Driving Allogenic CD4+ T Cell Dysfunction. Immunity, 2017, 47, 1114-1128.e6.	14.3	76
22	The role of T cell apoptosis in transplantation tolerance. Current Opinion in Immunology, 2000, 12, 522-527.	5.5	75
23	Complement Inhibition Enables Renal Allograft Accommodation and Long-Term Engraftment in Presensitized Nonhuman Primates. American Journal of Transplantation, 2011, 11, 2057-2066.	4.7	71
24	IL-9 and Th9 cells: progress and challenges. International Immunology, 2013, 25, 547-551.	4.0	67
25	Deletion of CD39 on natural killer cells attenuates hepatic ischemia/reperfusion injury in mice. Hepatology, 2010, 51, 1702-1711.	7.3	66
26	IL-9 and Th9 cells in health and diseases—From tolerance to immunopathology. Cytokine and Growth Factor Reviews, 2017, 37, 47-55.	7.2	66
27	TRIM29 Negatively Regulates the Type I IFN Production in Response to RNA Virus. Journal of Immunology, 2018, 201, 183-192.	0.8	63
28	The Costimulatory Receptor OX40 Inhibits Interleukin-17 Expression through Activation of Repressive Chromatin Remodeling Pathways. Immunity, 2016, 44, 1271-1283.	14.3	62
29	The innate natural killer cells in transplant rejection and tolerance induction. Current Opinion in Organ Transplantation, 2008, 13, 339-343.	1.6	61
30	The Evolving Role of mTOR Inhibition in Transplantation Tolerance. Journal of the American Society of Nephrology: JASN, 2011, 22, 408-415.	6.1	60
31	Adipocyte adaptive immunity mediates diet-induced adipose inflammation and insulin resistance by decreasing adipose Treg cells. Nature Communications, 2017, 8, .	12.8	56
32	A naturally occurring CD8+CD122+ T-cell subset as a memory-like Treg family. Cellular and Molecular Immunology, 2014, 11, 326-331.	10.5	52
33	Guidance of super-enhancers in regulation of IL-9 induction and airway inflammation. Journal of Experimental Medicine, 2018, 215, 559-574.	8.5	51
34	Macrophage subpopulations and their impact on chronic allograft rejection versus graft acceptance in a mouse heart transplant model. American Journal of Transplantation, 2018, 18, 604-616.	4.7	50
35	TNF superfamily receptor OX40 triggers invariant NKT cell pyroptosis and liver injury. Journal of Clinical Investigation, 2017, 127, 2222-2234.	8.2	50
36	Striking Dichotomy of PD-L1 and PD-L2 Pathways in Regulating Alloreactive CD4+and CD8+T Cells In Vivo. American Journal of Transplantation, 2007, 7, 2683-2692.	4.7	48

#	Article	IF	CITATIONS
37	Graft-Infiltrating Macrophages Adopt an M2 Phenotype and Are Inhibited by Purinergic Receptor P2X7 Antagonist in Chronic Rejection. American Journal of Transplantation, 2016, 16, 2563-2573.	4.7	44
38	ROCK inhibition impedes macrophage polarity and functions. Cellular Immunology, 2016, 300, 54-62.	3.0	42
39	Evidence for Cyclin D3 as a Novel Target of Rapamycin in Human T Lymphocytes. Journal of Biological Chemistry, 2004, 279, 31948-31955.	3.4	41
40	OX40 Controls Islet Allograft Tolerance in CD154 Deficient Mice by Regulating FOXP3+ Tregs. Transplantation, 2008, 85, 1659-1662.	1.0	37
41	The Emerging Role of Nanotechnology in Cell and Organ Transplantation. Transplantation, 2016, 100, 1629-1638.	1.0	33
42	Mouse macrophage polarity and ROCK1 activity depend on RhoA and non-apoptotic Caspase 3. Experimental Cell Research, 2016, 341, 225-236.	2.6	33
43	CD4+CD62L+ Central Memory T Cells Can Be Converted to Foxp3+ T Cells. PLoS ONE, 2013, 8, e77322.	2.5	31
44	Neovascularized implantable cell homing encapsulation platform with tunable local immunosuppressant delivery for allogeneic cell transplantation. Biomaterials, 2020, 257, 120232.	11.4	31
45	The Significance of Non–T-Cell Pathways in Graft Rejection: Implications for Transplant Tolerance. Transplantation, 2010, 90, 1043-1047.	1.0	30
46	The newly found functions of MTOC in immunological response. Journal of Leukocyte Biology, 2013, 95, 417-430.	3.3	30
47	Regulatory T Cells Are Critical to Tolerance Induction in Presensitized Mouse Transplant Recipients Through Targeting Memory T Cells. American Journal of Transplantation, 2010, 10, 1760-1773.	4.7	29
48	Macrophages as Effectors of Acute and Chronic Allograft Injury. Current Transplantation Reports, 2016, 3, 303-312.	2.0	29
49	A20 Restrains Thymic Regulatory T Cell Development. Journal of Immunology, 2017, 199, 2356-2365.	0.8	29
50	Macrophage/monocyte-specific deletion of Ras homolog gene family member A (RhoA) downregulates fractalkine receptor and inhibits chronic rejection of mouse cardiac allografts. Journal of Heart and Lung Transplantation, 2017, 36, 340-354.	0.6	29
51	Prolonged Graft Survival in Older Recipient Mice Is Determined by Impaired Effector T-Cell but Intact Regulatory T-Cell Responses. PLoS ONE, 2010, 5, e9232.	2.5	29
52	CD86 Is an Activation Receptor for NK Cell Cytotoxicity against Tumor Cells. PLoS ONE, 2013, 8, e83913.	2.5	29
53	Expression of Functional ICAM-1 and VCAM-1 Adhesion Molecules by an Immortalized Epithelial Cell Clone Derived from the Small Intestine. Cellular Immunology, 1997, 175, 58-66.	3.0	28
54	OX40 Costimulation Prevents Allograft Acceptance Induced by CD40-CD40L Blockade. Journal of Immunology, 2009, 182, 379-390.	0.8	28

#	Article	IF	CITATIONS
55	Efficacy and costâ€effectiveness of voriconazole prophylaxis for prevention of invasive aspergillosis in highâ€risk liver transplant recipients. Liver Transplantation, 2016, 22, 163-170.	2.4	28
56	T cell exhaustion is associated with antigen abundance and promotes transplant acceptance. American Journal of Transplantation, 2020, 20, 2540-2550.	4.7	28
57	Structure and function of major histocompatibility complex class I antigens. Current Opinion in Organ Transplantation, 2010, 15, 499-504.	1.6	27
58	Memory T cells in transplantation – progress and challenges. Current Opinion in Organ Transplantation, 2013, 18, 387-392.	1.6	27
59	Identification of the E3 Ligase TRIM29 as a Critical Checkpoint Regulator of NK Cell Functions. Journal of Immunology, 2019, 203, 873-880.	0.8	27
60	EphA2 phosphorylates <scp>NLRP</scp> 3 and inhibits inflammasomes in airway epithelial cells. EMBO Reports, 2020, 21, e49666.	4.5	25
61	Transcriptional and epigenetic regulation of immune tolerance: roles of the NF-κB family members. Cellular and Molecular Immunology, 2019, 16, 315-323.	10.5	24
62	DIFFERENTIAL EXPRESSION OF T-CELL GROWTH FACTORS IN REJECTING MURINE ISLET AND HUMAN RENAL ALLOGRAFTS. Transplantation, 1998, 66, 265-268.	1.0	24
63	Dissonant response of M0/M2 and M1 bone-marrow-derived macrophages to RhoA pathway interference. Cell and Tissue Research, 2016, 366, 707-720.	2.9	23
64	Rho-specific Guanine nucleotide exchange factors (Rho-GEFs) inhibition affects macrophage phenotype and disrupts Golgi complex. International Journal of Biochemistry and Cell Biology, 2017, 93, 12-24.	2.8	23
65	The phenotype of peritoneal mouse macrophages depends on the mitochondria and ATP/ADP homeostasis. Cellular Immunology, 2018, 324, 1-7.	3.0	23
66	Innate Allorecognition and Memory in Transplantation. Frontiers in Immunology, 2020, 11, 918.	4.8	23
67	Blood loss during extensive escharectomy and auto-microskin grafting in adult male major burn patients. Burns, 2011, 37, 790-793.	1.9	22
68	Memory T Cells Mediate Cardiac Allograft Vasculopathy and are Inactivated by Anti-OX40L Monoclonal Antibody. Cardiovascular Drugs and Therapy, 2014, 28, 115-122.	2.6	21
69	Ablation of interferon regulatory factor 4 in T cells induces "memory―of transplant tolerance that is irreversible by immune checkpoint blockade. American Journal of Transplantation, 2019, 19, 884-893.	4.7	21
70	Blockade of CD40L/CD40 costimulatory pathway in a DST presensitization model of islet allograft leads to a state of Allo-Ag specific tolerance and permits subsequent engraftment of donor strain islet or heart allografts. Transplantation Proceedings, 1999, 31, 627-628.	0.6	20
71	Novel roles of OX40 in the allograft response. Current Opinion in Organ Transplantation, 2008, 13, 26-30.	1.6	20
72	Inhalation injury in southwest Chinaâ \in "The evolution of care. Burns, 2010, 36, 506-510.	1.9	20

#	Article	IF	CITATIONS
73	Role of the NF-κB Family Member RelB in Regulation of Foxp3+ Regulatory T Cells In Vivo. Journal of Immunology, 2018, 200, 1325-1334.	0.8	20
74	Inhibition of RhoA and mTORC2/Rictor by Fingolimod (FTY720) induces p21-activated kinase 1, PAK-1 and amplifies podosomes in mouse peritoneal macrophages. Immunobiology, 2018, 223, 634-647.	1.9	20
75	Delayed Implantation of Pumped Kidneys Decreases Renal Allograft Futility in Combined Liver–Kidney Transplantation. Transplantation, 2020, 104, 1591-1603.	1.0	20
76	Negative T cell costimulation and islet tolerance. Diabetes/Metabolism Research and Reviews, 2003, 19, 179-185.	4.0	19
77	Pericytes, Microvasular Dysfunction, and Chronic Rejection. Transplantation, 2015, 99, 658-667.	1.0	19
78	Evolving Paradigms That Determine the Fate of an Allograft. American Journal of Transplantation, 2010, 10, 1143-1148.	4.7	18
79	Memory T cells and their exhaustive differentiation in allograft tolerance and rejection. Current Opinion in Organ Transplantation, 2012, 17, 15-19.	1.6	18
80	An overview on non-T cell pathways in transplant rejection and tolerance. Current Opinion in Organ Transplantation, 2010, 15, 422-426.	1.6	17
81	A new era for organ transplantation in China. Lancet, The, 2014, 383, 1971-1972.	13.7	17
82	Abrogation of Chronic Rejection in Rat Model System Involves Modulation of the mTORC1 and mTORC2 Pathways. Transplantation, 2013, 96, 782-790.	1.0	15
83	The Evolving Roles of Memory Immune Cells in Transplantation. Transplantation, 2015, 99, 2029-2037.	1.0	15
84	Screening RhoA/ROCK inhibitors for the ability to prevent chronic rejection of mouse cardiac allografts. Transplant Immunology, 2018, 50, 15-25.	1.2	14
85	Activated mouse CD4+Foxp3â^' T cells facilitate melanoma metastasis via Qa-1-dependent suppression of NK-cell cytotoxicity. Cell Research, 2012, 22, 1696-1706.	12.0	13
86	Type 1 diabetes and T regulatory cells. Pharmacological Research, 2015, 98, 22-30.	7.1	12
87	Epigenetically modifying the Foxp3 locus for generation of stable antigen-specific Tregs as cellular therapeutics. American Journal of Transplantation, 2020, 20, 2366-2379.	4.7	12
88	Longitudinal assessment of T cell inhibitory receptors in liver transplant recipients and their association with posttransplant infections. American Journal of Transplantation, 2018, 18, 351-363.	4.7	11
89	Overexpression of PD-1 on T cells promotes tolerance in cardiac transplantation via ICOS-dependent mechanisms. JCI Insight, 2021, 6, .	5.0	11
90	Antibacterial effect of dressings containing multivalent silver ion carried by zirconium phosphate on experimental rat burn wounds. Wound Repair and Regeneration, 2008, 16, 800-804.	3.0	10

#	Article	IF	CITATIONS
91	Macrophages and RhoA Pathway in Transplanted Organs. Results and Problems in Cell Differentiation, 2017, 62, 365-376.	0.7	10
92	Adaptive features of innate immune cells and their relevance to graft rejection. Current Opinion in Organ Transplantation, 2019, 24, 664-669.	1.6	10
93	T-cell growth factors in allograft rejection and tolerance. Transplantation Proceedings, 1999, 31, 342-343.	0.6	9
94	Inhibitory Receptors of the Immune System: Functions and Therapeutic Implications. Cellular and Molecular Immunology, 2009, 6, 407-414.	10.5	9
95	The transcription factor RelB restrains group 2 innate lymphoid cells and type 2 immune pathology in vivo. Cellular and Molecular Immunology, 2021, 18, 230-242.	10.5	9
96	The many shades of macrophages in regulating transplant outcome. Cellular Immunology, 2020, 349, 104064.	3.0	8
97	Genetically targeting the BATF family transcription factors BATF and BATF3 in the mouse abrogates effector T cell activities and enables long-term heart allograft survival. American Journal of Transplantation, 2022, 22, 414-426.	4.7	8
98	T follicular helper and memory cell responses and the mTOR pathway in murine heart transplantation. Journal of Heart and Lung Transplantation, 2020, 39, 134-144.	0.6	6
99	A rare find – cells that improve bone marrow transplantation. Nature Medicine, 2000, 6, 866-867.	30.7	5
100	Translating Tolerogenic Therapies to the Clinic $\hat{a} \in$ "Where Do We Stand and What are the Barriers?. Frontiers in Immunology, 2012, 3, 317.	4.8	5
101	IRF4 ablation in B cells abrogates allogeneic B cell responses and prevents chronic transplant rejection. Journal of Heart and Lung Transplantation, 2021, 40, 1122-1132.	0.6	5
102	Cross-immune tolerance: conception and its potential significance on transplantation tolerance. Cellular and Molecular Immunology, 2010, 7, 20-25.	10.5	4
103	Transgenic Expression of a Mutant Ribonuclease Regnase-1 in T Cells Disturbs T Cell Development and Functions. Frontiers in Immunology, 2021, 12, 682220.	4.8	4
104	Death of alloreactive T cells sets the stage for immunoregulation to act. Transplantation Proceedings, 2001, 33, 3041-3043.	0.6	3
105	Coinhibition of mTORC1/mTORC2 and RhoA /ROCK pathways prevents chronic rejection of rat cardiac allografts. Transplantation Reports, 2018, 3, 21-28.	0.4	3
106	The common gammac-cytokines and transplantation tolerance. Cellular and Molecular Immunology, 2004, 1, 167-72.	10.5	3
107	The RNA helicase DHX15 is a critical regulator of natural killer-cell homeostasis and functions. , 2022, 19, 687-701.		3
108	Mycophenolate Mofetil Is Compatible with CD28/CD154 Costimulatory Blockade in Preventing Transplant Rejection. Transplantation, 2005, 79, 736.	1.0	2

#	Article	IF	CITATIONS
109	Approaches and challenges in targeting memory T cells in transplant tolerance. Archivum Immunologiae Et Therapiae Experimentalis, 2007, 55, 309-314.	2.3	2
110	Organ transplantation in China—not yet a new era–Authors' reply. Lancet, The, 2014, 384, 741-742.	13.7	2
111	New Tricks for Leukocytes. Transplantation, 2015, 99, 2007-2008.	1.0	2
112	An Unexpected Partnership: MHC Class II Molecules as Ligands for NK Cells. Transplantation, 2020, 104, 229-230.	1.0	2
113	Endotoxin in the peripheral blood during acute intestinal allograft rejection. Transplant International, 1994, 7, 223-226.	1.6	2
114	Host immune suppression after small bowel/liver transplantation in rats. Transplant International, 1994, 7, 131-135.	1.6	2
115	Donor-specific cytotoxicity induced by allogeneic intestinal epithelial cells in a sponge matrix model. Transplant International, 1995, 8, 13-19.	1.6	2
116	Islet allograft tolerance in the absence of invariant natural killer T cells. Clinical Immunology, 2011, 141, 268-272.	3.2	1
117	What's hot, what's new: Report from the American Transplant Congress 2017. American Journal of Transplantation, 2018, 18, 308-320.	4.7	1
118	Immunological Aspect on Late Allograft Dysfunction. Journal of Immunology Research, 2014, 2014, 1-2.	2.2	0
119	New progress in immunobiology and transplantation research. Burns and Trauma, 2014, 2, 1.	0.7	0
120	Modulation of Innate Immune Cells to Create Transplant Tolerance. , 2017, , 125-150.		0
121	Biomarkers for Chronic Rejection: In Angiotensin Proteins We Trust?. Transplantation, 2019, 103, 1082-1083.	1.0	0
122	The Pursuit of Regulatory T Cells in the Induction of Transplant Tolerance. Advances in Experimental Medicine and Biology, 2021, 1278, 273-287.	1.6	0
123	Adenovirus-Mediated PD-L1 Over-Expression Has Differential Effects on Allograft Survival in Murine Islet and Heart Transplant Models Blood, 2004, 104, 4960-4960.	1.4	Ο