Tavio Tavio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5258381/publications.pdf Version: 2024-02-01

Τλλίο Τλλίο

#	Article	IF	CITATIONS
1	Strut and tie model optimization for reinforced concrete bridge pier head structure using a genetic algorithm. Journal of Civil Engineering, 2021, 35, 39.	0.1	0
2	Split tensile and flexural strength of concrete with artificial lightweight aggregate (ALWA) and steel-fiber. Journal of Physics: Conference Series, 2020, 1569, 042025.	0.4	0
3	Numerical Study of Potential Indonesian Rubber for Elastomeric Base Isolators in Highly-Seismic Zones. Journal of Physics: Conference Series, 2020, 1477, 052044.	0.4	2
4	Assessment and evaluation procedure of existing industrial building structure based on ASCE 41-17. Journal of Physics: Conference Series, 2020, 1477, 052045.	0.4	1
5	Flexural Capacity Predictions and Comparisons of GFRP Reinforced Beams. Journal of Physics: Conference Series, 2020, 1477, 052049.	0.4	0
6	A Theoretical Study of GFRP RC Beams Deflection. Journal of Physics: Conference Series, 2020, 1477, 052047.	0.4	0
7	Seismic protection of unreinforced masonry buildings by means of low cost elastomeric isolation systems. International Journal of Masonry Research and Innovation, 2020, 1, 1.	0.4	3
8	Strut and tie model optimization for reinforced concrete deep beam using genetic algorithm. Journal of Civil Engineering, 2020, 35, 14.	0.1	0
9	Comparative behavior of local hyperelastic lowgrade rubbers for low-cost base isolation. MATEC Web of Conferences, 2019, 276, 01001.	0.2	0
10	Mechanical properties of Indonesian hyperelastic low-grade rubber for low-cost base isolator. MATEC Web of Conferences, 2019, 276, 01017.	0.2	4
11	Evaluation of higher-strength steel reinforcing bar elongation for seismic design according to various standard specifications. AIP Conference Proceedings, 2019, , .	0.4	2
12	3D-Finite element modeling of lead rubber bearing using high damping material. MATEC Web of Conferences, 2019, 276, 01013.	0.2	3
13	Design of Earthquake Shaking Table (EST) Using Ball Screw Guide Linear Actuator. , 2019, , .		1
14	Experimental Study of Mortar Compressive Strength with Anadara Granosa Powder as a Substitute for Partial Use of Cement. IOP Conference Series: Materials Science and Engineering, 2019, 650, 012037.	0.6	1
15	Two-step advanced numerical approach for the design of low-cost unbonded fiber reinforced elastomeric seismic isolation systems in new masonry buildings. Engineering Failure Analysis, 2018, 90, 380-396.	4.0	41
16	The influence of OPC and PPC on compressive strength of ALWA concrete. MATEC Web of Conferences, 2018, 195, 01021.	0.2	1
17	Stress-strain relationship of high-strength steel (HSS) reinforcing bars. AIP Conference Proceedings, 2018, , .	0.4	4
18	Stress-Strain Behavior of Steel Fiber-Reinforced Concrete Cylinders Spirally Confined with Steel Bars. Advances in Civil Engineering, 2018, 2018, 1-8.	0.7	10

Τανιο Τανιο

#	Article	IF	CITATIONS
19	Experimental study of cold – Bonded artificial lightweight aggregate concrete. AIP Conference Proceedings, 2018, , .	0.4	1
20	Tensile strength/yield strength (TS/YS) ratios of high-strength steel (HSS) reinforcing bars. AIP Conference Proceedings, 2018, , .	0.4	10
21	Comparison of Compressive and Tensile Strengths of Dry-Cast Concrete with Ordinary Portland and Portland Pozzolana Cements. Civil Engineering Journal (Iran), 2018, 4, 1760.	3.9	4
22	Compressive Strength of Steel-Fiber Concrete with Artificial Lightweight Aggregate (ALWA). Civil Engineering Journal (Iran), 2018, 4, 2011.	3.9	3
23	The Effect of Styrofoam Artificial Lightweight Aggregate (ALWA) on Compressive Strength of Self Compacting Concrete (SCC). Civil Engineering Journal (Iran), 2018, 4, 2111.	3.9	2
24	FE Model of Low Grade Rubber for Modeling Housing's Low-Cost Rubber Base Isolators. Civil Engineering Journal (Iran), 2018, 4, 24.	3.9	9
25	The Mechanical Properties of Lightweight Concrete Made with Lightweight Aggregate Volcanic Pumice. , 2018, , .		3
26	Studi Perbandingan Kekuatan Lentur Balok Prategang di Daerah Risiko Gempa Berdasarkan SNI 03-2847-2002, SNI 2847:2013, dan ACI 318M-14 pada Struktur Apartemen Enviro Bekasi. Jurnal Teknik ITS, 2018, 7, .	0.1	0
27	Behavior of rubber base isolator with various shape factors. AIP Conference Proceedings, 2017, , .	0.4	2
28	Low cost rubber seismic isolators for masonry housing in developing countries. AIP Conference Proceedings, 2017, , .	0.4	3
29	Defining Appropriate Temperature for Perfect Erection Time of Steel Arch Bridge Closure to Minimize the Effect of the Thermal Stress. Case Study: The New Kutai Kartenagara Bridge, Indonesia. IOP Conference Series: Materials Science and Engineering, 2017, 267, 012018.	0.6	0
30	Cumulative Ductility and Hysteretic Behavior of Small Buckling-Restrained Braces. Advances in Civil Engineering, 2017, 2017, 1-11.	0.7	4
31	Low Cost Frictional Seismic Base-Isolation of Residential New Masonry Buildings in Developing Countries: A Small Masonry House Case Study. Open Civil Engineering Journal, 2017, 11, 1026-1035.	0.8	13
32	SEISMIC PERFORMANCE OF A MASONRY BUILDING ISOLATED WITH LOW-COST RUBBER ISOLATORS. , 2017, , .		12
33	Analysis of Retrofit Building Behavior with Base Isolation System Using Nonlinear Time History Analysis. IPTEK Journal of Proceedings Series, 2017, .	0.0	0
34	Desain Modifikasi Struktur Gedung Pusat Penelitian Dan Pendidikan Dokter Gigi Universitas Brawijaya Malang Dengan Penambahan Lantai Menggunakan Sistem Rangka Bresing Eksentris. Jurnal Teknik ITS, 2017, 6, .	0.1	0
35	Study of Confinement Index of High-Strength Concrete Columns Reinforced with High-Strength Steel Bars. IPTEK Journal of Proceedings Series, 2017, 3, .	0.0	0
36	A Possibility to Build Isolated Masonry Housing in High Seismic Zones Using Rubber Seismic Isolators. IPTEK Journal of Proceedings Series, 2017, 3, .	0.0	0

Τανιο Τανιο

#	Article	IF	CITATIONS
37	Moment Contribution Capacity of Tendon Prestressed Partial on Concrete Beam-column Joint Interior According to Provisions ACI 318-2008 Chapter 21.5.2.5(c) Due to Cyclic Lateral Loads. MATEC Web of Conferences, 2016, 58, 04005.	0.2	3
38	Performance of Square Reinforced Concrete Columns Externally Confined by Steel Angle Collars Under Combined Axial and Lateral Load. Procedia Engineering, 2015, 125, 1043-1049.	1.2	13
39	Metode Eksperimental Struktur Kolom Beton Bertulang Tahan Gempa Menggunakan CFRP Sebagai Eksternal Confinement. JTT: Jurnal Teknologi Terpadu, 2015, 1, .	0.1	0
40	Analytical model for axial stress-strain behavior of welded reinforcement grid confined concrete columns. Journal of Asian Concrete Federation, 2015, 1, 1-10.	2.2	1
41	Behavior of Precast Concrete Beam-to-Column Connection with U- and L-bent Bar Anchorages Placed Outside the Column Panel–experimental Study. Procedia Engineering, 2014, 95, 122-131.	1.2	9
42	Behaviour of Precast Concrete Beam-to-column Connection with U- and L-bent Bar Anchorages Placed Outside the Column Panel – Analytical Study. Procedia Engineering, 2014, 95, 112-121.	1.2	5
43	State-of-the-Art Report on Partially-prestressed Concrete Earthquake-resistant Building Structures for Highly-seismic Region. Procedia Engineering, 2014, 95, 43-53.	1.2	11
44	Mixed Concrete Optimization using Fly Ash, Silica Fume and Iron Slag on the SCC's Compressive Strength. Procedia Engineering, 2013, 54, 827-839.	1.2	32
45	Ductile Structure Framework of Earthquake Resistant of Highrise Building on Exterior Beam-Column Joint with the Partial Prestressed Concrete Beam-Column Reinforced Concrete. Procedia Engineering, 2013, 54, 413-427.	1.2	5
46	Investigation of Stress-Strain Models for Confinement of Concrete by Welded Wire Fabric. Procedia Engineering, 2011, 14, 2031-2038.	1.2	9
47	Axial Load Behavior of Concrete Columns with Welded Wire Fabric as Transverse Reinforcement. Procedia Engineering, 2011, 14, 2039-2047.	1.2	18
48	Discussion of "Stress-Strain Model for High-Strength Concrete Confined by Welded Wire Fabric―by Sami W. Tabsh. Journal of Materials in Civil Engineering, 2009, 21, 40-45.	2.9	7
49	Ductility of confined reinforced concrete columns with welded reinforcement grids. , 2008, , .		1
50	Discussion of "Interactive Mechanical Model for Shear Strength of Deep Beams―by C. Y. Tang and K. H. Tan. Journal of Structural Engineering, 2006, 132, 826-827.	3.4	2
51	Effect of steel fiber on the shear strength of reactive powder concrete. IOP Conference Series: Materials Science and Engineering, 0, 508, 012006.	0.6	2
52	Proposed Innovative Square Reinforced Concrete Column Confinement System To Increase Ductility. SSRN Electronic Journal, 0, , .	0.4	0
53	A Proposed Innovative Confinement of Square Reinforced Concrete Columns for Ductility Improvement. SSRN Electronic Journal, 0, , .	0.4	0