
Liang Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5258301/publications.pdf Version: 2024-02-01

LIANC FU

#	Article	IF	CITATIONS
1	Microalgae tolerant of boron stress and bioresources accumulation during the boron removal process. Environmental Research, 2022, 208, 112639.	7.5	6
2	Trace phenolic acids simultaneously enhance degradation of chlorophenol and biofuel production by Chlorella regularis. Water Research, 2022, 218, 118524.	11.3	13
3	Using easy-to-biodegrade co-substrate to eliminate microcystin toxic on electrochemically active bacteria and enhance bioelectricity generation from cyanobacteria biomass. Science of the Total Environment, 2021, 751, 142292.	8.0	9
4	Benzoic and salicylic acid are the signaling molecules of Chlorella cells for improving cell growth. Chemosphere, 2021, 265, 129084.	8.2	15
5	Co-culture of Chlorella and Scenedesmus could enhance total lipid production under bacteria quorum sensing molecule stress. Journal of Water Process Engineering, 2021, 39, 101739.	5.6	29
6	<i>Shewanella</i> Drive Fe(III) Reduction to Promote Electro-Fenton Reactions and Enhance Fe Inner-Cycle. ACS ES&T Water, 2021, 1, 613-620.	4.6	8
7	Carbon dots enhance the recovery of microalgae bioresources from wastewater containing amoxicillin. Bioresource Technology, 2021, 335, 125258.	9.6	18
8	Phosphorus supply via a fed-batch strategy improves lipid heterotrophic production of Chlorella regularis. Environmental Science and Pollution Research, 2020, 27, 31677-31685.	5.3	3
9	Promoting Chlorella photosynthesis and bioresource production using directionally prepared carbon dots with tunable emission. Journal of Colloid and Interface Science, 2020, 569, 195-203.	9.4	36
10	Humic substances as electron acceptors for anaerobic oxidation of methane driven by ANME-2d. Water Research, 2019, 164, 114935.	11.3	95
11	Hormesis effects of phosphorus on the viability of Chlorella regularis cells under nitrogen limitation. Biotechnology for Biofuels, 2019, 12, 121.	6.2	30
12	Mass transfer affects reactor performance, microbial morphology, and community succession in the methane-dependent denitrification and anaerobic ammonium oxidation co-culture. Science of the Total Environment, 2019, 651, 291-297.	8.0	27
13	Degradation of organic pollutants by anaerobic methane-oxidizing microorganisms using methyl orange as example. Journal of Hazardous Materials, 2019, 364, 264-271.	12.4	32
14	The content of trace element iron is a key factor for competition between anaerobic ammonium oxidation and methane-dependent denitrification processes. Chemosphere, 2018, 198, 370-376.	8.2	30
15	Chromium isotope fractionation during Cr(VI) reduction in a methane-based hollow-fiber membrane biofilm reactor. Water Research, 2018, 130, 263-270.	11.3	38
16	Excessive phosphorus caused inhibition and cell damage during heterotrophic growth of Chlorella regularis. Bioresource Technology, 2018, 268, 266-270.	9.6	51
17	Quorum sensing molecules in activated sludge could trigger microalgae lipid synthesis. Bioresource Technology, 2018, 263, 576-582.	9.6	49
18	Nitrogen source effects on the denitrifying anaerobic methane oxidation culture and anaerobic ammonium oxidation bacteria enrichment process. Applied Microbiology and Biotechnology, 2017, 101, 3895-3906.	3.6	41

Liang Fu

#	Article	IF	CITATIONS
19	Responses of the Microalga <i>Chlorophyta</i> sp. to Bacterial Quorum Sensing Molecules (<i>N</i> -Acylhomoserine Lactones): Aromatic Protein-Induced Self-Aggregation. Environmental Science & Technology, 2017, 51, 3490-3498.	10.0	102
20	Hollow fiber membrane bioreactor affects microbial community and morphology of the DAMO and Anammox co-culture system. Bioresource Technology, 2017, 232, 247-253.	9.6	48
21	Tracking the activity of the Anammox-DAMO process using excitation–emission matrix (EEM) fluorescence spectroscopy. Water Research, 2017, 122, 624-632.	11.3	38
22	Decoupling of DAMO archaea from DAMO bacteria in a methane-driven microbial fuel cell. Water Research, 2017, 110, 112-119.	11.3	86
23	Excessive phosphorus enhances Chlorella regularis lipid production under nitrogen starvation stress during glucose heterotrophic cultivation. Chemical Engineering Journal, 2017, 330, 566-572.	12.7	65
24	Simultaneous enrichment of denitrifying anaerobic methane-oxidizing microorganisms and anammox bacteria in a hollow-fiber membrane biofilm reactor. Applied Microbiology and Biotechnology, 2017, 101, 437-446.	3.6	58
25	Cr(VI) reduction coupled with anaerobic oxidation of methane in a laboratory reactor. Water Research, 2016, 102, 445-452.	11.3	80
26	Experimental evaluation of the metabolic reversibility of ANME-2d between anaerobic methane oxidation and methanogenesis. Applied Microbiology and Biotechnology, 2016, 100, 6481-6490.	3.6	12
27	Iron reduction in the DAMO/ Shewanella oneidensis MR-1 coculture system and the fate of Fe(II). Water Research, 2016, 88, 808-815.	11.3	74
28	Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field. Applied Microbiology and Biotechnology, 2016, 100, 439-446.	3.6	43
29	The role of paraffin oil on the interaction between denitrifying anaerobic methane oxidation and Anammox processes. Applied Microbiology and Biotechnology, 2015, 99, 7925-7936.	3.6	25
30	New primers for detecting and quantifying denitrifying anaerobic methane oxidation archaea in different ecological niches. Applied Microbiology and Biotechnology, 2015, 99, 9805-9812.	3.6	46
31	Design and evaluation of universal 16S rRNA gene primers for high-throughput sequencing to simultaneously detect DAMO microbes and anammox bacteria. Water Research, 2015, 87, 385-394.	11.3	68