
Neill J Liptrott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5258295/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HIV protease inhibitors are substrates for OATP1A2, OATP1B1 and OATP1B3 and lopinavir plasma concentrations are influenced by SLCO1B1 polymorphisms. Pharmacogenetics and Genomics, 2010, 20, 112-120.	0.7	160
2	Prioritization of Antiâ€5ARSâ€Covâ€2 Drug Repurposing Opportunities Based on Plasma and Target Site Concentrations Derived from their Established Human Pharmacokinetics. Clinical Pharmacology and Therapeutics, 2020, 108, 775-790.	2.3	118
3	Genetic Variants of ABCC10, a Novel Tenofovir Transporter, Are Associated With Kidney Tubular Dysfunction. Journal of Infectious Diseases, 2011, 204, 145-153.	1.9	102
4	Antiretroviral Solid Drug Nanoparticles with Enhanced Oral Bioavailability: Production, Characterization, and In Vitro–In Vivo Correlation. Advanced Healthcare Materials, 2014, 3, 400-411.	3.9	73
5	Raltegravir Is a Substrate for SLC22A6: a Putative Mechanism for the Interaction between Raltegravir and Tenofovir. Antimicrobial Agents and Chemotherapy, 2011, 55, 879-887.	1.4	58
6	Immunotoxicity Considerations for Next Generation Cancer Nanomedicines. Advanced Science, 2019, 6, 1900133.	5.6	54
7	Dose prediction for repurposing nitazoxanide in SARS oVâ€2 treatment or chemoprophylaxis. British Journal of Clinical Pharmacology, 2021, 87, 2078-2088.	1.1	46
8	Accelerated oral nanomedicine discovery from miniaturized screening to clinical production exemplified by paediatric HIV nanotherapies. Nature Communications, 2016, 7, 13184.	5.8	44
9	Functionalized superparamagnetic iron oxide nanoparticles provide highly efficient iron-labeling in macrophages for magnetic resonance–based detection in vivo. Cytotherapy, 2017, 19, 555-569.	0.3	44
10	Association of ABCC10 polymorphisms with nevirapine plasma concentrations in the German Competence Network for HIV/AIDS. Pharmacogenetics and Genomics, 2012, 22, 10-19.	0.7	38
11	Bridging communities in the field of nanomedicine. Regulatory Toxicology and Pharmacology, 2019, 106, 187-196.	1.3	32
12	Plasma and Intracellular Pharmacokinetics of Darunavir/Ritonavir Once Daily and Raltegravir Once and Twice Daily in HIV-Infected Individuals. Journal of Acquired Immune Deficiency Syndromes (1999), 2011, 58, 450-457.	0.9	31
13	Sound understanding of environmental, health and safety, clinical, and market aspects is imperative to clinical translation of nanomedicines. Nanotoxicology, 2017, 11, 147-149.	1.6	29
14	Overview of the blood compatibility of nanomedicines: A trend analysis of in vitro and in vivo studies. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1546.	3.3	29
15	Determining the relationship between nanoparticle characteristics and immunotoxicity: key challenges and approaches. Nanomedicine, 2016, 11, 1447-1464.	1.7	28
16	Efavirenz Is Predicted To Accumulate in Brain Tissue: an In Silico , In Vitro , and In Vivo Investigation. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	27
17	Rilpivirine Inhibits Drug Transporters ABCB1, SLC22A1, and SLC22A2 <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2013, 57, 5612-5618.	1.4	26
18	Induction of Cytokines by Nucleic Acid Nanoparticles (NANPs) Depends on the Type of Delivery Carrier. Molecules, 2021, 26, 652.	1.7	26

NEILL J LIPTROTT

#	Article	IF	CITATIONS
19	Plasma and Intracellular (Peripheral Blood Mononuclear Cells) Pharmacokinetics of Once-Daily Raltegravir (800 Milligrams) in HIV-Infected Patients. Antimicrobial Agents and Chemotherapy, 2011, 55, 72-75.	1.4	24
20	Research Spotlight: Nanomedicines for HIV therapy. Therapeutic Delivery, 2013, 4, 153-156.	1.2	23
21	Interactions of antiretroviral drugs with the SLC22A1 (OCT1) drug transporter. Frontiers in Pharmacology, 2015, 6, 78.	1.6	19
22	Assessment of interactions of efavirenz solid drug nanoparticles with human immunological and haematological systems. Journal of Nanobiotechnology, 2018, 16, 22.	4.2	18
23	Towards a rational design of solid drug nanoparticles with optimised pharmacological properties. Journal of Interdisciplinary Nanomedicine, 2016, 1, 110-123.	3.6	17
24	Partial mitigation of gold nanoparticle interactions with human lymphocytes by surface functionalization with a â€~mixed matrix'. Nanomedicine, 2014, 9, 2467-2479.	1.7	16
25	Toxicity and inflammatory response in Swiss albino mice after intraperitoneal and oral administration of polyurethane nanoparticles. Toxicology Letters, 2016, 246, 17-27.	0.4	16
26	Firefly luciferase offers superior performance to AkaLuc for tracking the fate of administered cell therapies. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 796-808.	3.3	16
27	High-throughput nanoprecipitation of the organic antimicrobial triclosan and enhancement of activity against Escherichia coli. Journal of Materials Chemistry B, 2013, 1, 4455.	2.9	15
28	Advances in nanomedicine drug delivery applications for HIV therapy. Future Science OA, 2018, 4, FSO230.	0.9	15
29	Critical considerations for targeting colorectal liver metastases with nanotechnology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1588.	3.3	14
30	The Application of Nanotechnology toÂDrug Delivery in Medicine. , 2015, , 173-223.		12
31	Incompatibility of chemical protein synthesis inhibitors with accurate measurement of extended protein degradation rates. Pharmacology Research and Perspectives, 2017, 5, e00359.	1.1	12
32	Derivation of CYP3A4 and CYP2B6 degradation rate constants in primary human hepatocytes: A siRNA-silencing-based approach. Drug Metabolism and Pharmacokinetics, 2018, 33, 179-187.	1.1	11
33	Scalable nanoprecipitation of niclosamide and <i>in vivo</i> demonstration of long-acting delivery after intramuscular injection. Nanoscale, 2021, 13, 6410-6416.	2.8	11
34	Flow cytometric analysis of the physical and protein-binding characteristics of solid drug nanoparticle suspensions. Nanomedicine, 2015, 10, 1407-1421.	1.7	9
35	Long-Acting Injectable Statins—Is It Time for a Paradigm Shift?. Molecules, 2019, 24, 2685.	1.7	7
36	In Vitro Determination of the Immunogenic Impact of Nanomaterials on Primary Peripheral Blood Mononuclear Cells. International Journal of Molecular Sciences, 2020, 21, 5610.	1.8	7

NEILL J LIPTROTT

#	Article	IF	CITATIONS
37	Drug delivery systems as immunomodulators for therapy of infectious disease: Relevance to COVID-19. Advanced Drug Delivery Reviews, 2021, 178, 113848.	6.6	6
38	Lack of interaction of lopinavir solid drug nanoparticles with cells of the immune system. Nanomedicine, 2017, 12, 2043-2054.	1.7	5
39	Assessment of changes in autophagic vesicles in human immune cell lines exposed to nano particles. Cell and Bioscience, 2021, 11, 133.	2.1	3
40	Exposure of human immune cells, to the antiretrovirals efavirenz and lopinavir, leads to lower glucose uptake and altered bioenergetic cell profiles through interactions with SLC2A1. Biomedicine and Pharmacotherapy, 2022, 150, 112999.	2.5	3
41	Physiologically based pharmacokinetic modeling of intravenously administered nanoformulated substances. Drug Delivery and Translational Research, 2022, 12, 2132-2144.	3.0	3
42	Linear and branched polymer prodrugs of the water-soluble nucleoside reverse-transcriptase inhibitor emtricitabine as structural materials for long-acting implants. Journal of Materials Chemistry B, 2022, 10, 4395-4404.	2.9	3
43	Cytotoxic chemotherapy and the evolution of cellular and viral resistance to antiretroviral therapy in HIV- infected individuals with lymphoma. HIV Clinical Trials, 2016, 17, 197-203.	2.0	2
44	Opportunities and Challenges in Nanotechnology-enabled Antiretroviral Delivery. Frontiers in Nanobiomedical Research, 2016, , 205-239.	0.1	0
45	In vitro characterisation of solid drug nanoparticle compositions of efavirenz in a brain endothelium cell line. Journal of Interdisciplinary Nanomedicine, 2017, 2, 157-169.	3.6	0
46	Safety assessment of a new nanoemulsion-based drug-delivery system reveals unexpected, drug-free anticoagulant activity. Nanomedicine, 2020, 15, 1361-1373.	1.7	0
47	AUTOSTERE: Systematic Search for Scaffold Replacement Opportunities within Structural Databases. Journal of Chemical Information and Modeling, 2021, 61, 1778-1788.	2.5	Ο