Chuanyi Wang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5258279/chuanyi-wang-publications-by-year.pdf

Version: 2024-04-26

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

533	30,865	88	153
papers	citations	h-index	g-index
550	36,374 ext. citations	8.4	8.03
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
533	Visible Light-Induced Catalyst-Free Activation of Peroxydisulfate: Pollutant-Dependent Production of Reactive Species <i>Environmental Science & Environmental Science & Envir</i>	10.3	4
532	Recent optimization and panelizing measures for green energy projects; insights into CO2 emission influencing to circular economy. <i>Fuel</i> , 2022 , 314, 123094	7.1	12
531	Iron(V)/Iron(IV) species in graphitic carbon nitride-ferrate(VI)-visible light system: Enhanced oxidation of micropollutants. <i>Chemical Engineering Journal</i> , 2022 , 428, 132610	14.7	3
530	Automation in quantifying phenoxy herbicides and bentazon in surface water and groundwater using novel solid phase extraction and liquid chromatography tandem mass spectrometry. <i>Chemosphere</i> , 2022 , 286, 131927	8.4	2
529	Magnesium ferrite-nitrogen-doped graphene oxide nanocomposite: effective adsorptive removal of lead(II) and arsenic(III) <i>Environmental Science and Pollution Research</i> , 2022 , 1	5.1	O
528	Activation of Peroxymonosulfate by Phosphate and Carbonate for the Abatement of Atrazine: Roles of Radical and Nonradical Species. <i>ACS ES&T Water</i> , 2022 , 2, 635-643		1
527	Oxygen vacancies-modified S-scheme Bi2Ti2O7/CaTiO3 heterojunction for highly efficient photocatalytic NO removal under visible light. <i>Journal of Environmental Chemical Engineering</i> , 2022 , 10, 107420	6.8	O
526	Thermo-photodynamic perspective of the simultaneous S-Scheme ternary heterostructure through Ag3VO4 shuttle for the increased photo-redox ability. <i>Applied Materials Today</i> , 2022 , 27, 101435	6.6	
525	A critical review on plasma-catalytic removal of VOCs: Catalyst development, process parameters and synergetic reaction mechanism <i>Science of the Total Environment</i> , 2022 , 154290	10.2	1
524	Modulation of photocatalytic activity of SrBi2Ta2O9 nanosheets in NO removal by tuning facets exposure. <i>Journal of Materials Science and Technology</i> , 2022 , 122, 91-100	9.1	1
523	Reactivity of nitrogen species with inorganic and organic compounds in water <i>Chemosphere</i> , 2022 , 302, 134911	8.4	O
522	Metal-Free Phosphorus-Doped ZnIn2S4 Nanosheets for Enhanced Photocatalytic CO2 Reduction. Journal of Physical Chemistry C, 2021 , 125, 23813-23820	3.8	7
521	Enhanced photocatalytic hydrogen production by loading histidine on TiO2. <i>JPhys Energy</i> , 2021 , 3, 0140	00419	O
520	Paper-Based Vapor Detection of Formaldehyde: Colorimetric Sensing with High Sensitivity. <i>Chemosensors</i> , 2021 , 9, 335	4	2
519	Perylene Imide-Based Optical Chemosensors for Vapor Detection. <i>Chemosensors</i> , 2021 , 9, 1	4	7
518	Ultrasound and water flow driven piezophototronic effect in self-polarized flexible Fe2O3 containing PVDF nanofibers film for enhanced catalytic oxidation. <i>Nano Energy</i> , 2021 , 90, 106586	17.1	7
517	Reduction of Ionic Silver by Sulfur Dioxide as a Source of Silver Nanoparticles in the Environment. <i>Environmental Science & Environmental Science & E</i>	10.3	6

516	Metal Organic Frameworks (MOFs) as Photocatalysts for the Degradation of Agricultural Pollutants in Water. <i>ACS ES&T Engineering</i> , 2021 , 1, 804-826		20
515	Groundwater contamination with the threat of COVID-19: Insights into CSR theory of Carroll's pyramid. <i>Journal of King Saud University - Science</i> , 2021 , 33, 101295	3.6	27
514	Thermal coupled photocatalysis to enhance CO2 reduction activities on Ag loaded g-C3N4 catalysts. <i>Surfaces and Interfaces</i> , 2021 , 23, 101006	4.1	6
513	K4Nb6O17/Fe3N/Fe2O3/C3N4 as an enhanced visible light-driven quaternary photocatalyst for acetamiprid photodegradation, CO2 reduction, and cancer cells treatment. <i>Applied Surface Science</i> , 2021 , 544, 148939	6.7	14
512	Recyclable 0D/2D ZnFe2O4/Bi5FeTi3O15 S-scheme heterojunction with bismuth decoration for enhanced visible-light-driven tetracycline photodegradation. <i>Ceramics International</i> , 2021 , 47, 17109-17	′∮1 1 9	10
511	A subtle review on the challenges of photocatalytic fuel cell for sustainable power production. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 22877-22906	6.7	4
510	Peracetic Acid-Ruthenium(III) Oxidation Process for the Degradation of Micropollutants in Water. <i>Environmental Science & Environmental Science & Envi</i>	10.3	14
509	Mechanistic Investigation of Enhanced Photoreactivity of Dissolved Organic Matter after Chlorination. <i>Environmental Science & Enhanced Photoreactivity</i> 2021, 55, 8937-8946	10.3	5
508	Synthesis of CaFeO-NGO Nanocomposite for Effective Removal of Heavy Metal Ion and Photocatalytic Degradation of Organic Pollutants. <i>Nanomaterials</i> , 2021 , 11,	5.4	6
507	Constructing a Z-Scheme Heterojunction Photocatalyst of GaPO/HMoC/GaO without Mingling Type-II Heterojunction for CO Reduction to CO. <i>ACS Applied Materials & Description of Control of Co</i>	-335044	1 ¹⁰
506	Advanced activation of persulfate by polymeric g-CN based photocatalysts for environmental remediation: A review. <i>Journal of Hazardous Materials</i> , 2021 , 413, 125324	12.8	81
505	Generation of Iron(IV) in the Oxidation of Amines by Ferrate(VI): Theoretical Insight and Implications in Oxidizing Pharmaceuticals. <i>ACS ES&T Water</i> , 2021 , 1, 1932-1940		6
504	Boron- and phosphorous-doped graphene nanosheets and quantum dots as sensors and catalysts in environmental applications: a review. <i>Environmental Chemistry Letters</i> , 2021 , 19, 4375	13.3	6
503	Enhanced photocatalytic NO removal and toxic NO2 production inhibition over ZIF-8-derived ZnO nanoparticles with controllable amount of oxygen vacancies. <i>Chinese Journal of Catalysis</i> , 2021 , 42, 175-	- 18 3	27
502	Efficient removal of mercury ions with MoS-nanosheet-decorated PVDF composite adsorption membrane. <i>Environmental Pollution</i> , 2021 , 268, 115705	9.3	14
501	One-pot synthesis of novel ternary Fe3N/Fe2O3/C3N4 photocatalyst for efficient removal of rhodamine B and CO2 reduction. <i>Journal of Alloys and Compounds</i> , 2021 , 852, 156955	5.7	37
500	Oxygen-doping of ZnIn2S4 nanosheets towards boosted photocatalytic CO2 reduction. <i>Journal of Energy Chemistry</i> , 2021 , 57, 1-9	12	28
499	Confining single-atom Pd on g-C3N4 with carbon vacancies towards enhanced photocatalytic NO conversion. <i>Applied Catalysis B: Environmental</i> , 2021 , 284, 119683	21.8	38

498	Near-infrared light to heat conversion in peroxydisulfate activation with MoS: A new photo-activation process for water treatment. <i>Water Research</i> , 2021 , 190, 116720	12.5	46
497	Effect of Metal Ions on Oxidation of Micropollutants by Ferrate(VI): Enhancing Role of Fe Species. <i>Environmental Science & Environmental Science & En</i>	10.3	31
496	Plasmonic Hot Electrons from Oxygen Vacancies for Infrared Light-Driven Catalytic CO2 Reduction on Bi2O3I. <i>Angewandte Chemie</i> , 2021 , 133, 923-929	3.6	12
495	Plasmonic Hot Electrons from Oxygen Vacancies for Infrared Light-Driven Catalytic CO Reduction on Bi O. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 910-916	16.4	59
494	Oxygen vacancy confining effect on photocatalytic efficiency of Pt1-black TiO2 single-atom photocatalysts for hydrogen generation and phenol decomposition. <i>Environmental Chemistry Letters</i> , 2021 , 19, 1815-1821	13.3	10
493	Classical and alternative disinfection strategies to control the COVID-19 virus in healthcare facilities: a review. <i>Environmental Chemistry Letters</i> , 2021 , 19, 1-7	13.3	16
492	Ferrate(VI) Oxidation of Pharmaceuticals in Hydrolyzed Urine: Enhancement by Creatinine and the Role of Fe(IV). <i>ACS ES&T Water</i> , 2021 , 1, 969-979		18
491	The interaction of AgO nanoparticles with Escherichia coli: inhibition-sterilization process. <i>Scientific Reports</i> , 2021 , 11, 1703	4.9	7
490	Current understanding of the surface contamination and contact transmission of SARS-CoV-2 in healthcare settings. <i>Environmental Chemistry Letters</i> , 2021 , 19, 1-10	13.3	19
489	A Dilute and Shoot Strategy for Determining Toxins in Tomato-Based Samples and in Different Flours Using LC-IDMS Separation. <i>Molecules</i> , 2021 , 26,	4.8	5
488	Enhanced removal of Cr(III)-EDTA chelates from high-salinity water by ternary complex formation on DETA functionalized magnetic carbon-based adsorbents. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 209, 111858	7	8
487	Degradation of perfluoroheptanoic acid in water by electron beam irradiation. <i>Environmental Chemistry Letters</i> , 2021 , 19, 2689-2694	13.3	1
486	Single-Atom PdN3 Sites on Carbon-Deficient g-C3N4 for Photocatalytic H2 Evolution. <i>Transactions of Tianjin University</i> , 2021 , 27, 139-146	2.9	9
485	Revelation of Fe(V)/Fe(IV) Involvement in the Fe(VI)-ABTS System: Kinetic Modeling and Product Analysis. <i>Environmental Science & Environmental Scienc</i>	10.3	14
484	Metal-organic frameworks for environmental applications. <i>Cell Reports Physical Science</i> , 2021 , 2, 10034.	86.1	18
483	Strain-Driven Polarized Electric Field-Promoted Photocatalytic Activity in Borate-Based CsCdBO Bulk Materials. <i>ACS Applied Materials & ACS Applied & AC</i>	9.5	5
482	Improved charge carrier dynamics through a type II staggered Ce MOF/mc BiVO4 n-n heterojunction for enhanced visible light utilisation. <i>Applied Surface Science</i> , 2021 , 553, 149556	6.7	4
481	Photothermal catalytic CO2 hydrogenation over molybdenum carbides: Crystal structure and photothermocatalytic synergistic effects. <i>Journal of CO2 Utilization</i> , 2021 , 49, 101562	7.6	6

(2020-2021)

480	Visible light-driven novel BiTiO/CaTiO composite photocatalyst with enhanced photocatalytic activity towards NO removal. <i>Chemosphere</i> , 2021 , 275, 130083	8.4	10
479	Oxidation of antibiotics by ferrate(VI) in water: Evaluation of their removal efficiency and toxicity changes. <i>Chemosphere</i> , 2021 , 277, 130365	8.4	12
478	Novel Ag decorated, BiOCl surface doped AgVO3 nanobelt ternary composite with Z-scheme homojunction-heterojunction interface for high prolific photo switching, quantum efficiency and hole mediated photocatalysis. <i>Applied Catalysis B: Environmental</i> , 2021 , 293, 120224	21.8	25
477	Mechanistic insight of simultaneous removal of tetracycline and its related antibiotic resistance bacteria and genes by ferrate(VI). <i>Science of the Total Environment</i> , 2021 , 786, 147492	10.2	7
476	State-of-the-art and prospects of Zn-containing layered double hydroxides (Zn-LDH)-based materials for photocatalytic water remediation. <i>Chemosphere</i> , 2021 , 278, 130367	8.4	9
475	Ultralow Ru doping induced interface engineering in MOF derived ruthenium-cobalt oxide hollow nanobox for efficient water oxidation electrocatalysis. <i>Chemical Engineering Journal</i> , 2021 , 420, 129805	14.7	43
474	A meta-analysis of photocatalytic performance and efficiency of bismuth oxide (BiO2_x). <i>Journal of Cleaner Production</i> , 2021 , 322, 129070	10.3	2
473	Insights into different dimensional MXenes for photocatalysis. <i>Chemical Engineering Journal</i> , 2021 , 424, 130340	14.7	16
472	Thermal coupled photocatalysis over Pt/g-C3N4 for selectively reducing CO2 to CH4 via cooperation of the electronic metal upport interaction effect and the oxidation state of Pt. <i>Applied Catalysis B: Environmental</i> , 2021 , 298, 120565	21.8	12
471	Degradation of PFOS and PFOA in soil and groundwater samples by high dose Electron Beam Technology. <i>Radiation Physics and Chemistry</i> , 2021 , 189, 109705	2.5	3
470	Polarization-enhanced photocatalytic activity in non-centrosymmetric materials based photocatalysis: A review. <i>Chemical Engineering Journal</i> , 2021 , 426, 131681	14.7	4
469	Sustainable ferrate oxidation: Reaction chemistry, mechanisms and removal of pollutants in wastewater. <i>Environmental Pollution</i> , 2021 , 290, 117957	9.3	20
468	Boosting thermo-photocatalytic CO conversion activity by using photosynthesis-inspired electron-proton-transfer mediators. <i>Nature Communications</i> , 2021 , 12, 123	17.4	23
467	Elucidating the Role of Dissolved Organic Matter and Sunlight in Mediating the Formation of Ag-Au Bimetallic Alloy Nanoparticles in the Aquatic Environment. <i>Environmental Science & Environmental Sc</i>	10.3	3
466	Reactive High-Valent Iron Intermediates in Enhancing Treatment of Water by Ferrate <i>Environmental Science & Environmental Sc</i>	10.3	6
465	Electronic modulation of iron-bearing heterogeneous catalysts to accelerate Fe(III)/Fe(II) redox cycle for highly efficient Fenton-like catalysis. <i>Applied Catalysis B: Environmental</i> , 2020 , 276, 119016	21.8	36
464	Sulfidation of sea urchin-like zinc oxide nanospheres: Kinetics, mechanisms, and impacts on growth of Escherichia coli. <i>Science of the Total Environment</i> , 2020 , 741, 140415	10.2	3
463	Enhancement of photocatalytic NO removal activity of g-C3N4 by modification with illite particles. <i>Environmental Science: Nano</i> , 2020 , 7, 1990-1998	7.1	9

462	Removal of microplastics from the environment. A review. <i>Environmental Chemistry Letters</i> , 2020 , 18, 807-828	13.3	125
461	Copper, silver, and titania nanoparticles do not release ions under anoxic conditions and release only minute ion levels under oxic conditions in water: Evidence for the low toxicity of nanoparticles. <i>Environmental Chemistry Letters</i> , 2020 , 18, 1319-1328	13.3	17
460	Enhanced Interface Charge Transfer of Z-Scheme Photocatalyst by Br Substitution at the Bay Position in Perylene Tetracarboxylic Diimide. <i>Solar Rrl</i> , 2020 , 4, 2000303	7.1	10
459	Cytotoxic Free Radicals on Air-Borne Soot Particles Generated by Burning Wood or Low-Maturity Coals. <i>Environmental Science & Environmental Science & </i>	10.3	16
458	Revelation of ferrate(VI) unimolecular decay under alkaline conditions: Investigation of involvement of Fe(IV) and Fe(V) species. <i>Chemical Engineering Journal</i> , 2020 , 388, 124134	14.7	20
457	Enhanced removal of chromium(III) for aqueous solution by EDTA modified attapulgite: Adsorption performance and mechanism. <i>Science of the Total Environment</i> , 2020 , 720, 137391	10.2	17
456	Fenton reaction induced in-situ redox and re-complexation of polyphenol-Cr complex and their products. <i>Chemosphere</i> , 2020 , 250, 126214	8.4	16
455	Constructing FeCoSe2/Co0.85Se heterostructure catalysts for efficient oxygen evolution. <i>Journal of Alloys and Compounds</i> , 2020 , 825, 154073	5.7	12
454	Br-doping of g-C3N4 towards enhanced photocatalytic performance in Cr(VI) reduction. <i>Chinese Journal of Catalysis</i> , 2020 , 41, 1498-1510	11.3	24
453	The photocatalytic performance and active sites of g-C3N4 effected by the coordination doping of Fe(III). <i>Chinese Journal of Catalysis</i> , 2020 , 41, 1564-1572	11.3	20
452	Enhanced removal of Cr(III) in high salt organic wastewater by EDTA modified magnetic mesoporous silica. <i>Microporous and Mesoporous Materials</i> , 2020 , 303, 110262	5.3	17
451	Determination of Toxins in Sunflower Oil by Liquid Chromatography Isotope Dilution Tandem Mass Spectrometry. <i>Molecules</i> , 2020 , 25,	4.8	10
450	Photocatalytic removal of NO by intercalated carbon nitride: The effect of group IIA element ions. <i>Applied Catalysis B: Environmental</i> , 2020 , 273, 119007	21.8	23
449	Strategic combination of N-doped graphene and g-C3N4: Efficient catalytic peroxymonosulfate-based oxidation of organic pollutants by non-radical-dominated processes. <i>Applied Catalysis B: Environmental</i> , 2020 , 272, 119005	21.8	70
448	Enhanced ferrate(VI) oxidation of micropollutants in water by carbonaceous materials: Elucidating surface functionality. <i>Chemical Engineering Journal</i> , 2020 , 398, 125607	14.7	29
447	Latest progress in g-C3N4 based heterojunctions for hydrogen production via photocatalytic water splitting: a mini review. <i>JPhys Energy</i> , 2020 , 2, 042003	4.9	20
446	Visible light and fulvic acid assisted generation of Mn(III) to oxidize bisphenol A: The effect of tetrabromobisphenol A. <i>Water Research</i> , 2020 , 169, 115273	12.5	28
445	Black phosphorous-based nanostructures in environmental remediation: Current status and future perspectives. <i>Chemical Engineering Journal</i> , 2020 , 389, 123460	14.7	9

(2020-2020)

444	Three-dimensional open CoMoOx/CoMoSx/CoSx nanobox electrocatalysts for efficient oxygen evolution reaction. <i>Applied Catalysis B: Environmental</i> , 2020 , 265, 118605	21.8	109
443	Novel polyethyleneimine functionalized chitosanlIgnin composite sponge with nanowall-network structures for fast and efficient removal of Hg(II) ions from aqueous solution. <i>Environmental Science: Nano</i> , 2020 , 7, 793-802	7.1	30
442	Inactivation of Murine Norovirus and Fecal Coliforms by Ferrate(VI) in Secondary Effluent Wastewater. <i>Environmental Science & Environmental &</i>	10.3	26
441	Amorphous Ti(IV)-modified flower-like ZnIn2S4 microspheres with enhanced hydrogen evolution photocatalytic activity and simultaneous wastewater purification. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 2693-2699	7.1	9
440	Quantification of aromatic amines derived from azo colorants in textile by ion-pairing liquid chromatography tandem mass spectrometry. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2020 , 1137, 121957	3.2	3
439	Facile synthesis of Mo-doped TiO2 for selective photocatalytic CO2 reduction to methane: Promoted H2O dissociation by Mo doping. <i>Journal of CO2 Utilization</i> , 2020 , 38, 1-9	7.6	33
438	Regulation of Cell Uptake and Cytotoxicity by Nanoparticle Core under the Controlled Shape, Size, and Surface Chemistries. <i>ACS Nano</i> , 2020 , 14, 289-302	16.7	38
437	Determination of acrylamide in gingerbread and other food samples by HILIC-MS/MS: A dilute-and-shoot method. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2020 , 1136, 121933	3.2	9
436	Interaction of Ag with soil organic matter: Elucidating the formation of silver nanoparticles. <i>Chemosphere</i> , 2020 , 243, 125413	8.4	19
435	Visible-light-driven Ag/AgCl@In2O3: a ternary photocatalyst for the degradation of tetracycline antibiotics. <i>Catalysis Science and Technology</i> , 2020 , 10, 8230-8239	5.5	8
434	Preparation of Cu/GO/Ti electrode by electrodeposition and its enhanced electrochemical reduction for aqueous nitrate. <i>Journal of Environmental Management</i> , 2020 , 276, 111357	7.9	12
433	Improved quantification of mass fraction of colorants in textile by high-performance liquid chromatography coupled with tandem mass spectrometric detector. <i>Accreditation and Quality Assurance</i> , 2020 , 25, 259-272	0.7	2
432	Atomic Layer Deposition of Mixed-Layered Aurivillius Phase on TiO Nanotubes: Synthesis, Characterization and Photoelectrocatalytic Properties. <i>Nanomaterials</i> , 2020 , 10,	5.4	15
431	Development of fluorescence surrogates to predict the ferrate(VI) oxidation of pharmaceuticals in wastewater effluents. <i>Water Research</i> , 2020 , 185, 116256	12.5	7
430	Efficient photocatalytic degradation of gaseous toluene over F-doped TiO2/exfoliated bentonite. <i>Applied Surface Science</i> , 2020 , 530, 147286	6.7	25
429	Removal of Mercury Ions from Aqueous Solutions by Crosslinked Chitosan-based Adsorbents: A Mini Review. <i>Chemical Record</i> , 2020 , 20, 1220-1234	6.6	13
428	Carbon quantum dots implanted CdS nanosheets: Efficient visible-light-driven photocatalytic reduction of Cr(VI) under saline conditions. <i>Applied Catalysis B: Environmental</i> , 2020 , 262, 118306	21.8	71
427	Fate and risk of metal sulfide nanoparticles in the environment. <i>Environmental Chemistry Letters</i> , 2020 , 18, 97-111	13.3	15

426	Ferrate(VI) pretreatment before disinfection: An effective approach to controlling unsaturated and aromatic halo-disinfection byproducts in chlorinated and chloraminated drinking waters. <i>Environment International</i> , 2020 , 138, 105641	12.9	24
425	Mesoporous silicate/carbon composites derived from dye-loaded palygorskite clay waste for efficient removal of organic contaminants. <i>Science of the Total Environment</i> , 2019 , 696, 133955	10.2	22
424	Attachment of cerium oxide nanoparticles of different surface charges to kaolinite: Molecular and atomic mechanisms. <i>Environmental Research</i> , 2019 , 177, 108645	7.9	14
423	A three-dimensional macroporous network structured chitosan/cellulose biocomposite sponge for rapid and selective removal of mercury(II) ions from aqueous solution. <i>Chemical Engineering Journal</i> , 2019, 363, 192-202	14.7	84
422	A systematic investigation on morphology tailoring, defect tuning and visible-light photocatalytic functionality of Ti-based perovskite nanostructures. <i>Catalysis Today</i> , 2019 , 335, 591-598	5.3	8
421	Environmental Antibiotics and Antibiotic Resistance: From Problems to Solutions. <i>Frontiers of Environmental Science and Engineering</i> , 2019 , 13, 1	5.8	12
420	Elimination of antibiotic resistance genes and control of horizontal transfer risk by UV-based treatment of drinking water: A mini review. <i>Frontiers of Environmental Science and Engineering</i> , 2019 , 13, 1	5.8	35
419	Interaction of benzo[a]pyrene with Cu(II)-montmorillonite: Generation and toxicity of environmentally persistent free radicals and reactive oxygen species. <i>Environment International</i> , 2019 , 129, 154-163	12.9	37
418	Colored TiO2 composites embedded on fabrics as photocatalysts: Decontamination of formaldehyde and deactivation of bacteria in water and air. <i>Chemical Engineering Journal</i> , 2019 , 375, 121949	14.7	17
417	Rapid removal of acesulfame potassium by acid-activated ferrate(VI) under mild alkaline conditions. <i>Chemosphere</i> , 2019 , 230, 416-423	8.4	18
416	Potential environmental risks of nanopesticides: Application of Cu(OH) nanopesticides to soil mitigates the degradation of neonicotinoid thiacloprid. <i>Environment International</i> , 2019 , 129, 42-50	12.9	29
415	Octahedral-shaped perovskite CaCu3Ti4O12 with dual defects and coexposed {(001), (111)} facets for visible-light photocatalysis. <i>Applied Catalysis B: Environmental</i> , 2019 , 254, 86-97	21.8	31
414	Removal of sulfachloropyridazine by ferrate(VI): Kinetics, reaction pathways, biodegradation, and toxicity evaluation. <i>Chemical Engineering Journal</i> , 2019 , 372, 742-751	14.7	25
413	Mechanistic Insight into the Effect of Metal Ions on Photogeneration of Reactive Species from Dissolved Organic Matter. <i>Environmental Science & Environmental Science & Envir</i>	10.3	41
412	Light-driven thermocatalytic CO reduction over surface-passivated EMoC nanowires: enhanced catalytic stability by light. <i>Chemical Communications</i> , 2019 , 55, 4651-4654	5.8	21
411	Active Site-Directed Tandem Catalysis on Single Platinum Nanoparticles for Efficient and Stable Oxidation of Formaldehyde at Room Temperature. <i>Environmental Science & Camp; Technology</i> , 2019 , 53, 3610-3619	10.3	31
410	Engineering of reduced graphene oxide on nanosheetg-C3N4/perylene imide heterojunction for enhanced photocatalytic redox performance. <i>Applied Catalysis B: Environmental</i> , 2019 , 250, 42-51	21.8	44
409	Improved photo-dechlorination at polar photocatalysts K3B6O10X (X = Cl, Br) by halogen atoms-modulated polarization. <i>Catalysis Science and Technology</i> , 2019 , 9, 2273-2281	5.5	7

(2019-2019)

408	Organic Pollutant Degradation and CO Conversion. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 8103-8108	16.4	45
407	Two-Dimensional Layered Zinc Silicate Nanosheets with Excellent Photocatalytic Performance for Organic Pollutant Degradation and CO2 Conversion. <i>Angewandte Chemie</i> , 2019 , 131, 8187-8192	3.6	0
406	Nitrogen-sulfur co-doped industrial graphene as an efficient peroxymonosulfate activator: Singlet oxygen-dominated catalytic degradation of organic contaminants. <i>Applied Catalysis B: Environmental</i> , 2019 , 251, 335-345	21.8	162
405	Oxidation of Pharmaceuticals by Ferrate(VI) in Hydrolyzed Urine: Effects of Major Inorganic Constituents. <i>Environmental Science & Environmental Scien</i>	10.3	59
404	Low-molecular-weight organic acids impede the degradation of naphthol in iron oxides/persulfate systems: Implications for research experiments in pure conditions. <i>Chemosphere</i> , 2019 , 225, 1-8	8.4	4
403	Oxidation of Sulfonamide Antibiotics of Six-Membered Heterocyclic Moiety by Ferrate(VI): Kinetics and Mechanistic Insight into SO Extrusion. <i>Environmental Science & Environmental Science & Environm</i>	4 ^{10.3}	58
402	CaCu3Ti4O12, an efficient catalyst for ibuprofen removal by activation of peroxymonosulfate under visible-light irradiation. <i>Environmental Chemistry Letters</i> , 2019 , 17, 481-486	13.3	18
401	Formation and Evolution of Solvent-Extracted and Nonextractable Environmentally Persistent Free Radicals in Fly Ash of Municipal Solid Waste Incinerators. <i>Environmental Science & Environmental Scie</i>	10.3	20
400	Amido-functionalized carboxymethyl chitosan/montmorillonite composite for highly efficient and cost-effective mercury removal from aqueous solution. <i>Journal of Colloid and Interface Science</i> , 2019 , 554, 479-487	9.3	37
399	Size-dependent maternal-fetal transfer and fetal developmental toxicity of ZnO nanoparticles after oral exposures in pregnant mice. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 182, 109439	7	33
398	Visible-light-enhanced electrocatalytic hydrogen production on semimetal bismuth nanorods. <i>Applied Surface Science</i> , 2019 , 494, 293-300	6.7	5
397	Ferrate(VI) pre-treatment and subsequent chlorination of blue-green algae: Quantification of disinfection byproducts. <i>Environment International</i> , 2019 , 133, 105195	12.9	31
396	Chitosan Encapsulation of Ferrate for Controlled Release to Water:Mechanistic Insights and Degradation of Organic Contaminant. <i>Scientific Reports</i> , 2019 , 9, 18268	4.9	6
395	Size effect of Pt co-catalyst on photocatalytic efficiency of g-C3N4 for hydrogen evolution. <i>Applied Surface Science</i> , 2019 , 464, 36-42	6.7	90
394	Ultrathin Co0.85Se nanosheet cocatalyst for visible-light CO2 photoreduction. <i>Catalysis Today</i> , 2019 , 335, 208-213	5.3	34
393	Interactions between silver nanoparticles and other metal nanoparticles under environmentally relevant conditions: A review. <i>Science of the Total Environment</i> , 2019 , 653, 1042-1051	10.2	66
392	Phototransformation of halophenolic disinfection byproducts in receiving seawater: Kinetics, products, and toxicity. <i>Water Research</i> , 2019 , 150, 68-76	12.5	34
391	Photocatalytic toluene degradation over Bi-decorated TiO2: Promoted O2 supply to catalysts surface by metallic Bi. <i>Catalysis Today</i> , 2019 , 335, 372-380	5.3	20

390	Pharmaceuticals and pesticides in secondary effluent wastewater: Identification and enhanced removal by acid-activated ferrate(VI). <i>Water Research</i> , 2019 , 148, 272-280	12.5	63
389	Degradation of chloramphenicol by chlorine and chlorine dioxide in a pilot-scale water distribution system. <i>Separation and Purification Technology</i> , 2019 , 211, 564-570	8.3	13
388	Clay mineral adsorbents for heavy metal removal from wastewater: a review. <i>Environmental Chemistry Letters</i> , 2019 , 17, 629-654	13.3	158
387	Highly efficient and selective removal of mercury ions using hyperbranched polyethylenimine functionalized carboxymethyl chitosan composite adsorbent. <i>Chemical Engineering Journal</i> , 2019 , 358, 253-263	14.7	105
386	Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes: A review. <i>Journal of Hazardous Materials</i> , 2019 , 372, 3-16	12.8	201
385	Efficient microwave degradation of humic acids in water using persulfate and activated carbon. <i>Environmental Chemistry Letters</i> , 2018 , 16, 1069-1075	13.3	20
384	Cooperative Effects of Zwitterionic-Ionic Surfactant Mixtures on the Interfacial Water Structure Revealed by Sum Frequency Generation Vibrational Spectroscopy. <i>Langmuir</i> , 2018 , 34, 5273-5278	4	5
383	Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes. <i>Environmental Chemistry Letters</i> , 2018 , 16, 947-967	13.3	121
382	TiO2-supported Ag nanoclusters with enhanced visible light activity for the photocatalytic removal of NO. <i>Applied Catalysis B: Environmental</i> , 2018 , 234, 206-212	21.8	55
381	Transformation of Polycyclic Aromatic Hydrocarbons and Formation of Environmentally Persistent Free Radicals on Modified Montmorillonite: The Role of Surface Metal Ions and Polycyclic Aromatic Hydrocarbon Molecular Properties. <i>Environmental Science & Environmental Scie</i>	10.3	95
380	Photocatalytic CO2 reduction over SrTiO3: Correlation between surface structure and activity. <i>Applied Surface Science</i> , 2018 , 447, 627-635	6.7	72
379	Determination of Antimicrobial Residues in Honey by Liquid Chromatography Tandem Mass Spectrometry. <i>Food Analytical Methods</i> , 2018 , 11, 2043-2055	3.4	10
378	Enhanced oxidation of antibiotics by ferrate(VI)-sulfur(IV) system: Elucidating multi-oxidant mechanism. <i>Chemical Engineering Journal</i> , 2018 , 341, 137-145	14.7	60
377	Synthesis of a three-dimensional network sodium alginatepoly(acrylic acid)/attapulgite hydrogel with good mechanic property and reusability for efficient adsorption of Cu2+ and Pb2+. <i>Environmental Chemistry Letters</i> , 2018 , 16, 653-658	13.3	26
376	Hierarchical TiO2 nanowire/microflower photoanode modified with Au nanoparticles for efficient photoelectrochemical water splitting. <i>Catalysis Science and Technology</i> , 2018 , 8, 1395-1403	5.5	23
375	Improved photocatalytic NO removal activity of SrTiO3 by using SrCO3 as a new co-catalyst. <i>Applied Catalysis B: Environmental</i> , 2018 , 227, 24-34	21.8	71
374	Selective photocatalytic CO2 reduction to CH4 over Pt/In2O3: Significant role of hydrogen adatom. <i>Applied Catalysis B: Environmental</i> , 2018 , 226, 544-553	21.8	84
373	Degradation kinetics and transformation products of chlorophene by aqueous permanganate. Water Research, 2018 , 138, 293-300	12.5	42

372	Efficient removal of methyl orange using Cu2O as a dual function catalyst. <i>Applied Surface Science</i> , 2018 , 444, 559-568	6.7	33
371	Perovskite nanostructures assembled in molten salt based on halogen anions KX (X = F, Cl and Br): Regulated morphology and defect-mediated photocatalytic activity. <i>Applied Catalysis B: Environmental</i> , 2018 , 232, 531-543	21.8	33
370	Removal of Cu(II) in water by polymer enhanced ultrafiltration: Influence of polymer nature and pH. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2018 , 53, 33-38	2.3	11
369	Metal-mediated oxidation of fluoroquinolone antibiotics in water: A review on kinetics, transformation products, and toxicity assessment. <i>Journal of Hazardous Materials</i> , 2018 , 344, 1136-1154	l ^{12.8}	98
368	Cobalt ferrite nanoparticles with controlled composition-peroxymonosulfate mediated degradation of 2-phenylbenzimidazole-5-sulfonic acid. <i>Applied Catalysis B: Environmental</i> , 2018 , 221, 266-279	21.8	102
367	Biomass derived hierarchically porous and heteroatom-doped carbons for supercapacitors. <i>Journal of Colloid and Interface Science</i> , 2018 , 509, 369-383	9.3	57
366	Electrochemical synthesis of ferrate(VI) using sponge iron anode and oxidative transformations of antibiotic and pesticide. <i>Journal of Hazardous Materials</i> , 2018 , 344, 1155-1164	12.8	26
365	Degradation of atrazine by ZnxCu1\(\mathbb{Z}\)Fe2O4 nanomaterial-catalyzed sulfite under UV\(\mathbb{U}\)is light irradiation: Green strategy to generate SO4\(\mathbb{I}\)Applied Catalysis B: Environmental, 2018, 221, 380-392	21.8	141
364	Oxygen vacancies induced visible-light photocatalytic activities of CaCu3Ti4O12 with controllable morphologies for antibiotic degradation. <i>Applied Catalysis B: Environmental</i> , 2018 , 221, 422-432	21.8	8o
363	Nitrogen-doped graphene and graphene quantum dots: A review onsynthesis and applications in energy, sensors and environment. <i>Advances in Colloid and Interface Science</i> , 2018 , 259, 44-64	14.3	196
362	Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes: Access to Energy and Value-Added Chemicals. <i>Frontiers in Chemistry</i> , 2018 , 6, 141	5	137
361	Glutathione-functionalized melamine sponge, a mimic of a natural antidote, as a quick responsive adsorbent for efficient removal of Hg(II) from aqueous solutions. <i>Environmental Chemistry Letters</i> , 2018 , 16, 1429-1434	13.3	11
360	Occurrence, distribution and composition of aliphatic and polycyclic aromatic hydrocarbons in sediment cores from the Lower Fox River, Wisconsin, US. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 4974-4988	5.1	11
359	Synergistic effect of Cu-ion and WO 3 nanofibers on the enhanced photocatalytic degradation of Rhodamine B and aniline solution. <i>Applied Surface Science</i> , 2018 , 451, 306-314	6.7	30
358	Rapid mineralization of methyl orange by nanocrystalline-assembled mesoporous CuO microspheres. <i>Nanotechnology</i> , 2018 , 29, 445701	3.4	3
357	Real-Time Atomic Scale Observation of Surface-Induced Crystallization of a Bismuth Nanodroplet by Stepwise Ordering Mechanism. <i>Crystal Growth and Design</i> , 2018 , 18, 5808-5815	3.5	2
356	Selective Adsorption of Pb(II) from Aqueous Solution by Triethylenetetramine-Grafted Polyacrylamide/Vermiculite. <i>Materials</i> , 2018 , 11,	3.5	25
355	Stabilization of Ag-Au Bimetallic Nanocrystals in Aquatic Environments Mediated by Dissolved Organic Matter: A Mechanistic Perspective. <i>Environmental Science & Dissolved</i> 2018, 52, 7269-727	7 ¹ 8 ^{0.3}	12

354	Ptl /[(CH3)2NH2]3[Bil6] as a well-dispersed photocatalyst for hydrogen production in hydroiodic acid. <i>Nano Energy</i> , 2018 , 50, 665-674	17.1	24
353	Degradation of aqueous 2,4,4'-Trihydroxybenzophenone by persulfate activated with nitrogen doped carbonaceous materials and the formation of dimer products. <i>Water Research</i> , 2018 , 143, 176-18	37 ^{2.5}	102
352	Ferrate(VI) oxidation of polychlorinated diphenyl sulfides: Kinetics, degradation, and oxidized products. <i>Water Research</i> , 2018 , 143, 1-9	12.5	58
351	Water-stable metal-organic frameworks for aqueous removal of heavy metals and radionuclides: A review. <i>Chemosphere</i> , 2018 , 209, 783-800	8.4	238
350	Supported single-atom catalysts: synthesis, characterization, properties, and applications. <i>Environmental Chemistry Letters</i> , 2018 , 16, 477-505	13.3	62
349	Dewatering and low-temperature pyrolysis of oily sludge in the presence of various agricultural biomasses. <i>Environmental Technology (United Kingdom)</i> , 2018 , 39, 2715-2723	2.6	9
348	Mechanistic Understanding of the Adsorption Behavior of Metal Lead Ions by Attapulgite-Induced Porous Nanocomposite Hydrogels. <i>Journal of Chemical & Data</i> , 2018, 63, 4241-4247	2.8	8
347	Determination of Thyreostats in Urine Using Supported Liquid Extraction and Mixed-Mode Cation-Exchange Solid-Phase Extraction: Screening and Confirmatory Methods. <i>Journal of Chromatographic Science</i> , 2018 , 56, 858-866	1.4	4
346	Carbohydrates-Derived Nitrogen-Doped Hierarchical Porous Carbon for Ultrasensitive Detection of 4-Nitrophenol. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 17391-17401	8.3	37
345	Evidence of Low-Dimensional Surface Structures for Oxide Materials: Impact on Energy Conversion. <i>ACS Applied Energy Materials</i> , 2018 , 1, 6469-6476	6.1	4
344	Accelerated Oxidation of Organic Contaminants by Ferrate(VI): The Overlooked Role of Reducing Additives. <i>Environmental Science & Environmental Scienc</i>	10.3	90
343	Donor-Acceptor Supramolecular Organic Nanofibers as Visible-Light Photoelectrocatalysts for Hydrogen Production. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 19764-19772	9.5	15
342	Impact of inorganic ions and natural organic matter on arsenates removal by ferrate(VI): Understanding a complex effect of phosphates ions. <i>Water Research</i> , 2018 , 141, 357-365	12.5	29
341	Morphology controlled synthesis of CeTiO4 using molten salts and enhanced photocatalytic activity for CO2 reduction. <i>Applied Surface Science</i> , 2018 , 456, 360-368	6.7	9
340	Low-temperature co-pyrolysis behaviours and kinetics of oily sludge: effect of agricultural biomass. <i>Environmental Technology (United Kingdom)</i> , 2017 , 38, 361-369	2.6	22
339	K3MB5O10 (M = Zn and Cd) with d10 configuration: Efficient and reusable catalysts for dehalogenation of halophenols. <i>Applied Catalysis B: Environmental</i> , 2017 , 206, 599-607	21.8	18
338	Impact of metal ions, metal oxides, and nanoparticles on the formation of disinfection byproducts during chlorination. <i>Chemical Engineering Journal</i> , 2017 , 317, 777-792	14.7	53
337	Zero-Valent Iron Nanoparticles Reduce Arsenites and Arsenates to As(0) Firmly Embedded in CoreBhell Superstructure: Challenging Strategy of Arsenic Treatment under Anoxic Conditions. ACS Sustainable Chemistry and Engineering, 2017, 5, 3027-3038	8.3	63

336	Aptamer functionalized silver clusters for STED microscopy. RSC Advances, 2017, 7, 11821-11826	3.7	2	
335	Layered Perovskite Pb2Bi4Ti5O18 for Excellent Visible Light-Driven Photocatalytic NO Removal. <i>Industrial & Amp; Engineering Chemistry Research</i> , 2017 , 56, 2908-2916	3.9	21	
334	Facile synthesis of water soluble fluorescent metal (Pt, Au, Ag and Cu) quantum clusters for the selective detection of Fe3+ ions as both fluorescent and colorimetric probes. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 2466-2473	7.1	19	
333	In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles. <i>Nature Communications</i> , 2017 , 8, 14462	17.4	33	
332	Environmentally Persistent Free Radicals in Soils of Past Coking Sites: Distribution and Stabilization. <i>Environmental Science & Environmental Science</i>	10.3	61	
331	Switching of semiconducting behavior from n-type to p-type induced high photocatalytic NO removal activity in g-C3N4. <i>Applied Catalysis B: Environmental</i> , 2017 , 214, 46-56	21.8	72	
330	Bacterial community structure and microorganism inactivation following water treatment with ferrate(VI) or chlorine. <i>Environmental Chemistry Letters</i> , 2017 , 15, 525-530	13.3	14	
329	Voids padding induced further enhancement in photocatalytic performance of porous graphene-like carbon nitride. <i>Journal of Hazardous Materials</i> , 2017 , 335, 66-74	12.8	24	
328	Nanostructured 3D-porous graphene hydrogel based Ti/Sb-SnO-Gr electrode with enhanced electrocatalytic activity. <i>Chemosphere</i> , 2017 , 169, 651-659	8.4	25	
327	Efficient Removal of Pb(II) from Aqueous Solution by Modified Montmorillonite/Carbon Composite: Equilibrium, Kinetics, and Thermodynamics. <i>Journal of Chemical & Engineering Data</i> , 2017 , 62, 333-	-3 ² 0 ⁸	22	
326	High Electrochemical Performance for Pb(II) Detection Based on N,S Co-Doped Porous Honeycomb Carbon Modified Electrodes. <i>Journal of the Electrochemical Society</i> , 2017 , 164, B382-B389	3.9	6	
325	Two-channel photocatalytic production of H2O2 over g-C3N4 nanosheets modified with perylene imides. <i>Journal of Catalysis</i> , 2017 , 352, 274-281	7-3	127	
324	Enhanced Lithium Ion Storage Performance of Tannic Acid in LiTFSI Electrolyte. <i>ACS Omega</i> , 2017 , 2, 1273-1278	3.9	24	
323	Enhanced photocatalytic hydrogen evolution along with byproducts suppressing over Z-scheme Cd x Zn 1lk S/Au/g-C 3 N 4 photocatalysts under visible light. <i>Science Bulletin</i> , 2017 , 62, 602-609	10.6	102	
322	Synergistic effect of aqueous removal of fluoroquinolones by a combined use of peroxymonosulfate and ferrate(VI). <i>Chemosphere</i> , 2017 , 177, 144-148	8.4	73	
321	Fluorescent Au nanoclusters stabilized by silane: facile synthesis, color-tunability and photocatalytic properties. <i>Nanoscale</i> , 2017 , 9, 4981-4988	7.7	13	
320	Iron based sustainable greener technologies to treat cyanobacteria and microcystin-LR in water. Water Science and Technology: Water Supply, 2017 , 17, 107-114	1.4	13	
319	Aggregation behaviors of alkyl ether carboxylate surfactants in water. <i>Journal of Molecular Liquids</i> , 2017 , 227, 161-167	6	7	

318	Exploring the Origin of High Dechlorination Activity in Polar Materials M2B5O9Cl (M = Ca, Sr, Ba, Pb) with Built-In Electric Field. <i>Chemistry of Materials</i> , 2017 , 29, 639-647	9.6	36
317	Defective graphitic carbon nitride synthesized by controllable co-polymerization with enhanced visible light photocatalytic hydrogen evolution. <i>Catalysis Science and Technology</i> , 2017 , 7, 452-458	5.5	64
316	Freestanding MoO/MoC imbedded carbon fibers for Li-ion batteries. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 2908-2914	3.6	36
315	Chlorine decay and trihalomethane formation following ferrate(VI) preoxidation and chlorination of drinking water. <i>Chemosphere</i> , 2017 , 187, 413-420	8.4	8
314	Assessment of toxicity of selenium and cadmium selenium quantum dots: A review. <i>Chemosphere</i> , 2017 , 188, 403-413	8.4	63
313	Thermal- and photo-induced degradation of perfluorinated carboxylic acids: Kinetics and mechanism. <i>Water Research</i> , 2017 , 126, 12-18	12.5	27
312	Layered nanostructured ferroelectric perovskite Bi5FeTi3O15 for visible light photodegradation of antibiotics. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 21275-21290	13	63
311	Low-temperature pyrolysis of oily sludge: roles of Fe/Al-pillared bentonites. <i>Archives of Environmental Protection</i> , 2017 , 43, 82-90		9
310	Oxidation of caffeine by acid-activated ferrate(VI): Effect of ions and natural organic matter. <i>AICHE Journal</i> , 2017 , 63, 4998-5006	3.6	28
309	Hierarchically Porous Carbons Derived from Cotton Stalks for High-Performance Supercapacitors. <i>ChemElectroChem</i> , 2017 , 4, 2599-2607	4.3	14
308	Screening and confirmation of steroids and nitroimidazoles in urine, blood, and food matrices: Sample preparation methods and liquid chromatography tandem mass spectrometric separations. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2017 , 145, 805-813	3.5	10
307	Carbon vacancy regulated photoreduction of NO to N2 over ultrathin g-C3N4 nanosheets. <i>Applied Catalysis B: Environmental</i> , 2017 , 218, 515-524	21.8	135
306	Photolysis of polycyclic aromatic hydrocarbons (PAHs) on Fe-montmorillonite surface under visible light: Degradation kinetics, mechanism, and toxicity assessments. <i>Chemosphere</i> , 2017 , 184, 1346-1354	8.4	44
305	Electrochemical treatment of 2, 4-dichlorophenol using a nanostructured 3D-porous Ti/Sb-SnO-Gr anode: Reaction kinetics, mechanism, and continuous operation. <i>Chemosphere</i> , 2017 , 185, 11-19	8.4	8
304	Plasmonic Ag-TiO2N nanocomposites for the photocatalytic removal of NO under visible light with high selectivity: The role of oxygen vacancies. <i>Applied Catalysis B: Environmental</i> , 2017 , 204, 67-77	21.8	147
303	Silane-modified halloysite/Fe 3 O 4 nanocomposites: Simultaneous removal of Cr(VI) and Sb(V) and positive effects of Cr(VI) on Sb(V) adsorption. <i>Chemical Engineering Journal</i> , 2017 , 311, 236-246	14.7	114
302	Insight into the role of Ti3+ in photocatalytic performance of shuriken-shaped BiVO4/TiO2N heterojunction. <i>Applied Catalysis B: Environmental</i> , 2017 , 203, 526-532	21.8	72
301	Enhanced oxidative transformation of organic contaminants by activation of ferrate(VI): Possible involvement of FeV/FeIV species. <i>Chemical Engineering Journal</i> , 2017 , 307, 513-517	14.7	61

300	Synthesis and photocatalytic property for H2 production of H1.78Sr0.78Bi0.22Nb2O7 nanosheets. <i>Applied Surface Science</i> , 2017 , 391, 499-506	6.7	9
299	Synthesis and photocatalytic hydrogen production activity of the Ni-CH 3 CH 2 NH 2 /H 1.78 Sr 0.78 Bi 0.22 Nb 2 O 7 hybrid layered perovskite. <i>Chinese Journal of Catalysis</i> , 2017 , 38, 2039-2047	11.3	5
298	Microwave-Enhanced Photolysis of Norfloxacin: Kinetics, Matrix Effects, and Degradation Pathways. <i>International Journal of Environmental Research and Public Health</i> , 2017 , 14,	4.6	8
297	Atomistic understanding of the origin of high oxygen reduction electrocatalytic activity of cuboctahedral Pt3CoPt coreEhell nanoparticles. <i>Catalysis Science and Technology</i> , 2016 , 6, 1393-1401	5.5	14
296	TiO2/g-C3N4 nanosheets hybrid photocatalyst with enhanced photocatalytic activity under visible light irradiation. <i>Research on Chemical Intermediates</i> , 2016 , 42, 3609-3624	2.8	44
295	Rapid and efficient removal of Ni(II) in water using constant-current electrolysis. <i>Desalination and Water Treatment</i> , 2016 , 57, 15952-15957		
294	Efficient photodechlorination of chlorophenols on polarized MZnB5O10 (M = Na and K) nonlinear optical materials. <i>Applied Catalysis B: Environmental</i> , 2016 , 181, 436-444	21.8	13
293	Removal of Nitric Oxide through Visible Light Photocatalysis by g-C3N4 Modified with Perylene Imides. <i>ACS Catalysis</i> , 2016 , 6, 6511-6519	13.1	170
292	Mechanism of thermal decomposition of K2FeO4 and BaFeO4: A review. <i>Hyperfine Interactions</i> , 2016 , 237, 1	0.8	3
291	Silica induced oxygen vacancies in supported mixed-phase TiO2 for photocatalytic degradation of phenol under visible light irradiation. <i>Catalysis Communications</i> , 2016 , 87, 98-101	3.2	12
290	Degradation of fluoroquinolone antibiotics by ferrate(VI): Effects of water constituents and oxidized products. <i>Water Research</i> , 2016 , 103, 48-57	12.5	134
289	Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic-inorganic trihalide perovskites. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 8910-5	11.5	199
288	Ti3+-self doped brookite TiO2 single-crystalline nanosheets with high solar absorption and excellent photocatalytic CO2 reduction. <i>Scientific Reports</i> , 2016 , 6, 23684	4.9	70
287	High-valent iron (Fe(VI), Fe(V), and Fe(IV)) species in water: characterization and oxidative transformation of estrogenic hormones. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 18802-10	3.6	20
286	Magnetic chitosan-functionalized Fe3O4@Au nanoparticles: Synthesis and characterization. <i>Journal of Alloys and Compounds</i> , 2016 , 684, 68-74	5.7	26
285	A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. <i>Chemosphere</i> , 2016 , 150, 702-714	8.4	400
284	Atomic Scale Imaging of Nucleation and Growth Trajectories of an Interfacial Bismuth Nanodroplet. <i>ACS Nano</i> , 2016 , 10, 2386-91	16.7	23
283	Ferrates(FeVI, FeV, and FeIV) oxidation of iodide: Formation of triiodide. <i>Chemosphere</i> , 2016 , 144, 1156-6	6 :14	25

282	Review on High Valent FeVI (Ferrate): A Sustainable Green Oxidant in Organic Chemistry and Transformation of Pharmaceuticals. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 18-34	8.3	150
281	Thermal decomposition of barium ferrate(VI): Mechanism and formation of FeIV intermediate and nanocrystalline Fe2O3 and ferrite. <i>Journal of Alloys and Compounds</i> , 2016 , 668, 73-79	5.7	6
280	Facile synthesis of carbon-Bi2WO6 with enhanced visible-light photocatalytic activities. <i>Journal of Nanoparticle Research</i> , 2016 , 18, 1	2.3	18
279	Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. <i>Applied Catalysis B: Environmental</i> , 2016 , 190, 26-35	21.8	322
278	Impact of inorganic buffering ions on the stability of Fe(vi) in aqueous solution: role of the carbonate ion. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 4415-22	3.6	22
277	Mesoporous graphitic carbon nitride and carbon IIIO 2 hybrid composite photocatalysts with enhanced photocatalytic activity under visible light irradiation. <i>Journal of Environmental Chemical Engineering</i> , 2016 , 4, 797-807	6.8	20
276	Ferrate(VI) as a greener oxidant: Electrochemical generation and treatment of phenol. <i>Journal of Hazardous Materials</i> , 2016 , 319, 130-6	12.8	50
275	Enhanced CO2 photoreduction activity of black TiO2Boated Cu nanoparticles under visible light irradiation: Role of metallic Cu. <i>Applied Catalysis A: General</i> , 2016 , 510, 34-41	5.1	78
274	Sensors for Environmental Monitoring. <i>Journal of Sensors</i> , 2016 , 2016, 1-1	2	3
273	Remarkable efficiency of phosphate removal: Ferrate(VI)-induced in situ sorption on core-shell nanoparticles. <i>Water Research</i> , 2016 , 103, 83-91	12.5	65
272	Insights into the physicochemical characteristics from vermiculite to silica nanosheets. <i>Applied Clay Science</i> , 2016 , 132-133, 17-23	5.2	29
271	Formation and Stabilization of Environmentally Persistent Free Radicals Induced by the Interaction of Anthracene with Fe(III)-Modified Clays. <i>Environmental Science & Environmental Science & Environ</i>	10.3	91
270	CO2 photoreduction with H2O vapor on highly dispersed CeO2/TiO2 catalysts: Surface species and their reactivity. <i>Journal of Catalysis</i> , 2016 , 337, 293-302	7.3	153
269	One step synthesis of silane-capped copper clusters as a sensitive optical probe and efficient catalyst for reversible color switching. <i>RSC Advances</i> , 2016 , 6, 38897-38905	3.7	9
268	From environmental pollutant to activated carbons for high-performance supercapacitors. <i>Electrochimica Acta</i> , 2016 , 201, 96-105	6.7	27
267	Chitosan-poly(vinyl alcohol)/attapulgite nanocomposites for copper(II) ions removal: pH dependence and adsorption mechanisms. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2016 , 500, 186-194	5.1	43
266	Phase-dependent enhancement for CO2 photocatalytic reduction over CeO2/TiO2 catalysts. <i>Catalysis Science and Technology</i> , 2016 , 6, 7967-7975	5.5	51
265	Chloramines in a pilot-scale water distribution system: Transformation of 17 estradiol and formation of disinfection byproducts. <i>Water Research</i> , 2016 , 106, 41-50	12.5	22

264	UV light induces Ag nanoparticle formation: roles of natural organic matter, iron, and oxygen. <i>Environmental Chemistry Letters</i> , 2016 , 14, 353-357	13.3	19
263	Direct evidence of Fe(V) and Fe(IV) intermediates during reduction of Fe(VI) to Fe(III): a nuclear forward scattering of synchrotron radiation approach. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 21787-90	3.6	24
262	Controlled fabrication of hierarchically porous Ti/SbBnO2 anode from honeycomb to network structure with high electrocatalytic activity. <i>RSC Advances</i> , 2015 , 5, 28803-28813	3.7	27
261	Humic acid as promising organic anodes for lithium/sodium ion batteries. <i>Chemical Communications</i> , 2015 , 51, 14708-11	5.8	62
260	Effect of low-molecular-weight organic acids on photo-degradation of phenanthrene catalyzed by Fe(III)-smectite under visible light. <i>Chemosphere</i> , 2015 , 138, 266-71	8.4	43
259	Effects of atmospheric pressure plasmas on isolated and cellular DNA-a review. <i>International Journal of Molecular Sciences</i> , 2015 , 16, 2971-3016	6.3	103
258	Ferrate promoted oxidative cleavage of sulfonamides: Kinetics and product formation under acidic conditions. <i>Chemical Engineering Journal</i> , 2015 , 279, 307-316	14.7	84
257	Efficient photocatalytic dechlorination of chlorophenols over a nonlinear optical material Na3VO2B6O11 under UV-visible light irradiation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 12179-12187	7 ¹³	48
256	Enhancement of visible-light-driven photocatalytic H 2 evolution from water over g-C 3 N 4 through combination with perylene diimide aggregates. <i>Applied Catalysis A: General</i> , 2015 , 498, 63-68	5.1	89
255	Investigation of disinfection byproducts formation in ferrate(VI) pre-oxidation of NOM and its model compounds followed by chlorination. <i>Journal of Hazardous Materials</i> , 2015 , 292, 197-204	12.8	80
254	Management on the location and concentration of Ti3+ in anatase TiO2 for defects-induced visible-light photocatalysis. <i>Applied Catalysis B: Environmental</i> , 2015 , 176-177, 354-362	21.8	174
253	Natural inorganic nanoparticlesformation, fate, and toxicity in the environment. <i>Chemical Society Reviews</i> , 2015 , 44, 8410-23	58.5	260
252	Oxidative degradation of triazine- and sulfonylurea-based herbicides using Fe(VI): The case study of atrazine and iodosulfuron with kinetics and degradation products. <i>Separation and Purification Technology</i> , 2015 , 156, 1041-1046	8.3	31
251	Magnetic graphene-carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification. <i>Advances in Colloid and Interface Science</i> , 2015 , 225, 229-40	14.3	123
250	Dechlorination of chlorinated phenols by subnanoscale Pd 0 /Fe 0 intercalated in smectite: pathway, reactivity, and selectivity. <i>Journal of Hazardous Materials</i> , 2015 , 300, 779-787	12.8	13
249	Defect-mediated of Cu@TiO2 coreBhell nanoparticles with oxygen vacancies for photocatalytic degradation 2,4-DCP under visible light irradiation. <i>Applied Surface Science</i> , 2015 , 358, 479-484	6.7	35
248	Self-Assembly of Perylene Imide Molecules into 1D Nanostructures: Methods, Morphologies, and Applications. <i>Chemical Reviews</i> , 2015 , 115, 11967-98	68.1	381
247	Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23435-23441	13	373

246	Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk. <i>Environmental Chemistry Letters</i> , 2015 , 13, 381-394	13.3	214
245	Enhanced photocatalytic H2 evolution over CdS/Au/g-C3N4 composite photocatalyst under visible-light irradiation. <i>APL Materials</i> , 2015 , 3, 104410	5.7	51
244	Fast-Target Analysis and Hourly Variation of 60 Pharmaceuticals in Wastewater Using UPLC-High Resolution Mass Spectrometry. <i>Archives of Environmental Contamination and Toxicology</i> , 2015 , 69, 525-	34 ^{.2}	18
243	Application of SPE followed by large-volume injection GC/MS for the analysis of geosmin and 2-methylisoborneol in water. <i>Analytical Methods</i> , 2015 , 7, 6678-6685	3.2	6
242	Biogeochemistry of selenium. A review. <i>Environmental Chemistry Letters</i> , 2015 , 13, 49-58	13.3	107
241	Transformation of anthracene on various cation-modified clay minerals. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 1261-9	5.1	11
240	Prussian blue/TiO2 nanocomposites as a heterogeneous photo-Fenton catalyst for degradation of organic pollutants in water. <i>Catalysis Science and Technology</i> , 2015 , 5, 504-514	5.5	67
239	Facile Synthesis of Defective TiO2-x Nanocrystals with High Surface Area and Tailoring Bandgap for Visible-light Photocatalysis. <i>Scientific Reports</i> , 2015 , 5, 15804	4.9	102
238	Ferryl and Ferrate Species: MBsbauer Spectroscopy Investigation. <i>Croatica Chemica Acta</i> , 2015 , 88, 363-	·3 6 &	9
237	Adsorption and removal of tetracycline from water by petroleum coke-derived highly porous activated carbon. <i>Journal of Environmental Chemical Engineering</i> , 2015 , 3, 1504-1512	6.8	94
236	Effect of pH on the formation of disinfection byproducts in ferrate(VI) pre-oxidation and subsequent chlorination. <i>Separation and Purification Technology</i> , 2015 , 156, 980-986	8.3	24
235	Morphology-controlled synthesis and photocatalytic properties of K1.9Na0.1Ta2O6 2H2O. <i>Chinese Journal of Catalysis</i> , 2015 , 36, 2164-2170	11.3	3
234	A critical review of selenium analysis in natural water samples. <i>Trends in Environmental Analytical Chemistry</i> , 2015 , 5, 1-7	12	49
233	Visible-light-driven photocatalytic H2 evolution from aqueous suspensions of perylene diimide dye-sensitized Pt/TiO2 catalysts. <i>RSC Advances</i> , 2015 , 5, 15880-15885	3.7	46
232	Ferrates: greener oxidants with multimodal action in water treatment technologies. <i>Accounts of Chemical Research</i> , 2015 , 48, 182-91	24.3	246
231	Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light. <i>Journal of Hazardous Materials</i> , 2015 , 287, 16-23	12.8	44
230	Ferrate(VI)-prompted removal of metals in aqueous media: mechanistic delineation of enhanced efficiency via metal entrenchment in magnetic oxides. <i>Environmental Science & Environmental Science & En</i>	10.3	92
229	Potassium Ferrite (KFeO2): Synthesis, Decomposition, and Application for Removal of Metals. <i>Science of Advanced Materials</i> , 2015 , 7, 579-587	2.3	6

228	Determination of tetracyclines in pig and other meat samples using liquid chromatography coupled with diode array and tandem mass spectrometric detectors. <i>Meat Science</i> , 2014 , 96, 1332-9	6.4	25
227	Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity. <i>Advances in Colloid and Interface Science</i> , 2014 , 204, 15-34	14.3	267
226	Designed synthesis of hydroxyapatite nanostructures: bullet-like single crystal and whiskered hollow ellipsoid. <i>Journal of Materials Science: Materials in Medicine</i> , 2014 , 25, 1395-401	4.5	6
225	Depollution of indigo dye by anodic oxidation and electro-Fenton using B-doped diamond anode. <i>Environmental Chemistry Letters</i> , 2014 , 12, 219-224	13.3	24
224	Size controllable synthesis of single-crystal ferroelectric Bi4Ti3O12 nanosheet dominated with {0 0 1} facets toward enhanced visible-light-driven photocatalytic activities. <i>Applied Catalysis B: Environmental</i> , 2014 , 156-157, 35-43	21.8	116
223	Electro-oxidation of the dye azure B: kinetics, mechanism, and by-products. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 8379-86	5.1	23
222	Dendritic Ag@Pt coreEhell catalyst modified with reduced graphene oxide and titanium dioxide: Fabrication, characterization, and its photo-electrocatalytic performance. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 5764-5771	6.7	37
221	Transformation of polycyclic aromatic hydrocarbons (PAHs) on Fe(III)-modified clay minerals: Role of molecular chemistry and clay surface properties. <i>Applied Catalysis B: Environmental</i> , 2014 , 154-155, 238-245	21.8	46
220	Preparation and characterization of chitosan poly(vinyl alcohol)/bentonite nanocomposites for adsorption of Hg(II) ions. <i>Chemical Engineering Journal</i> , 2014 , 251, 404-412	14.7	94
219	Mechanism of photocatalytic oxidation of amino acids: Hammett correlations. <i>Catalysis Today</i> , 2014 , 224, 263-268	5.3	13
218	pH dependence and thermodynamics of Hg(II) adsorption onto chitosan-poly(vinyl alcohol) hydrogel adsorbent. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2014 , 441, 51-58	5.1	55
217	Formation and toxicity of brominated disinfection byproducts during chlorination and chloramination of water: a review. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2014 , 49, 212-28	2.2	92
216	Engineering aspects of ferrate in water and wastewater treatment - a review. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2014 , 49, 1603-14	2.3	47
215	1D nanofiber composites of perylene diimides for visible-light-driven hydrogen evolution from water. <i>RSC Advances</i> , 2014 , 4, 48486-48491	3.7	52
214	Oxidation of Ni(II)-cyano and Co(III)-cyano complexes by Ferrate(VI): effect of pH. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2014 , 49, 1380-4	2.3	7
213	Adsorption of antibiotics and iopromide onto single-walled and multi-walled carbon nanotubes. <i>Chemical Engineering Journal</i> , 2014 , 255, 23-27	14.7	103
212	Oxidation of benzothiophene, dibenzothiophene, and methyl-dibenzothiophene by ferrate(VI). <i>Journal of Hazardous Materials</i> , 2014 , 279, 296-301	12.8	27
211	High-valent iron-based oxidants to treat perfluorooctanesulfonate and perfluorooctanoic acid in water. <i>Environmental Chemistry Letters</i> , 2014 , 12, 413-417	13.3	32

210	Oxidation of artificial sweetener sucralose by advanced oxidation processes: a review. Environmental Science and Pollution Research, 2014 , 21, 8525-33	5.1	30
209	A Bulk Boron-Based Photocatalyst for Efficient Dechlorination: K3B6O10Br. <i>Chemistry of Materials</i> , 2014 , 26, 3169-3174	9.6	86
208	Visible-light-assisted electrocatalytic oxidation of methanol using reduced graphene oxide modified Pt nanoflowers-TiO2 nanotube arrays. <i>ACS Applied Materials & District Materi</i>	6 ^{9:5}	101
207	Reductive and oxidative degradation of iopamidol, iodinated X-ray contrast media, by Fe(III)-oxalate under UV and visible light treatment. <i>Water Research</i> , 2014 , 67, 144-53	12.5	88
206	Confirmatory analysis of stanozolol metabolites in bovine, pig and sheep urines using an optimized clean-up and liquid chromatography-tandem mass spectrometry. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2014 , 88, 45-52	3.5	12
205	Enhanced formation of silver nanoparticles in Ag+-NOM-iron(II, III) systems and antibacterial activity studies. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	56
204	Meso- and micro- porous composite carbons derived from humic acid for supercapacitors. <i>Electrochimica Acta</i> , 2014 , 136, 504-512	6.7	78
203	Treatment of combined sewer overflows using ferrate (VI). Water Environment Research, 2014, 86, 2202	-1.8	8
202	Ferrate(VI): A Green Molecule in Odorous Gas Treatment. ACS Symposium Series, 2014, 193-207	0.4	1
201	Oxidation of microcystin-LR by ferrate(VI): kinetics, degradation pathways, and toxicity assessments. <i>Environmental Science & Environmental &</i>	10.3	81
200	Controllable synthesis of two different morphologies of Cu2O particles with the assistance of carbon dots. <i>RSC Advances</i> , 2014 , 4, 16524-16527	3.7	6
199	Luminescent Cu(0)@Cu(I)IIGA coreBhell nanoclusters via self-assembly. <i>Synthetic Metals</i> , 2014 , 198, 329-334	3.6	8
198	A LC-MS/MS confirmatory method for determination of chloramphenicol in real samples screened by competitive immunoassay. <i>Acta Alimentaria</i> , 2014 , 43, 306-314	1	1
197	Solar Energy Conversion by Nanostructured TiO2. <i>International Journal of Photoenergy</i> , 2014 , 2014, 1-2	2.1	3
196	A two-step synthesis of NaTaO3 microspheres for photocatalytic water splitting. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 13481-13485	6.7	27
195	Reduction of selenite by cysteine in ionic media. <i>Geochimica Et Cosmochimica Acta</i> , 2014 , 124, 98-108	5.5	17
194	MBsbauer investigation of the reaction of ferrate(VI) with sulfamethoxazole and aniline in alkaline medium. <i>Hyperfine Interactions</i> , 2014 , 224, 7-13	0.8	8
193	Synthesis and Evaluation of Visible-Light Photocatalyst: Nitrogen-Doped TiO2/Bi2O3 Heterojunction Structures. <i>Science of Advanced Materials</i> , 2014 , 6, 1892-1899	2.3	9

	192	Comparative studies on montmorillonite-supported zero-valent iron nanoparticles produced by different methods: reactivity and stability. <i>Environmental Technology (United Kingdom)</i> , 2013 , 34, 25-33	2.6	34
	191	Sulfonamides and tetracyclines in livestock wastewater. <i>Chemosphere</i> , 2013 , 91, 888-94	8.4	80
	190	Photocatalytic Degradation of Ni(II)-Cyano and Co(III)-Cyano Complexes. <i>Water, Air, and Soil Pollution</i> , 2013 , 224, 1	2.6	13
	189	Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: Effect of electrode materials. <i>Applied Catalysis B: Environmental</i> , 2013 , 140-141, 92-97	21.8	247
	188	Enhancement of methanol electrocatalytic oxidation on platinized WO3IIiO2 composite electrode under visible light irradiation. <i>Materials Research Bulletin</i> , 2013 , 48, 1099-1104	5.1	14
	187	ANALYSIS OF SULFONAMIDE RESIDUES IN REAL HONEY SAMPLES USING LIQUID CHROMATOGRAPHY WITH FLUORESCENCE AND TANDEM MASS SPECTROMETRY DETECTION. Journal of Liquid Chromatography and Related Technologies, 2013, 36, 1105-1125	1.3	16
	186	Visible-light-harvesting reduction of CO2 to chemical fuels with plasmonic Ag@AgBr/CNT nanocomposites. <i>Catalysis Today</i> , 2013 , 216, 268-275	5.3	54
;	185	Ferrate(VI) and ferrate(V) oxidation of organic compounds: Kinetics and mechanism. <i>Coordination Chemistry Reviews</i> , 2013 , 257, 495-510	23.2	209
	184	Nonenzymatic uric acid electrochemical sensor based on graphene-modified carbon fiber electrode. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2013 , 419, 94-99	5.1	54
:	183	Separation and determination of degradation products of acid orange 7 by capillary electrophoresis/capacitively coupled contactless conductivity detector. <i>Talanta</i> , 2013 , 111, 54-61	6.2	13
·	182	Facile fabrication, characterization of PtRu nanoparticles modified reduced graphene oxide and its high electrocatalytic activity for methanol electro-oxidation. <i>Colloids and Surfaces A:</i> Physicochemical and Engineering Aspects, 2013, 436, 57-61	5.1	39
:	181	TiO2 supported on silica nanolayers derived from vermiculite for efficient photocatalysis. <i>Catalysis Today</i> , 2013 , 216, 95-103	5.3	25
·	180	Organic matter source discrimination by humic acid characterization: synchronous scan fluorescence spectroscopy and Ferrate(VI). <i>Chemosphere</i> , 2013 , 90, 2013-9	8.4	31
:	179	Ferrate(VI) oxidation of propranolol: kinetics and products. <i>Chemosphere</i> , 2013 , 91, 105-9	8.4	74
	178	Oxidation of Elactam antibiotics by ferrate(VI). Chemical Engineering Journal, 2013, 221, 446-451	14.7	53
	177	Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability. <i>Environmental Science & Environmental Science & En</i>	10.3	137
:	176	Ferrate(VI)-induced arsenite and arsenate removal by in situ structural incorporation into magnetic iron(III) oxide nanoparticles. <i>Environmental Science & Environmental Scie</i>	10.3	142
	175	Ferrate(VI): A Green Chemistry Oxidant for Removal of Antibiotics in Water. <i>ACS Symposium Series</i> , 2013 , 31-44	0.4	3

174	Stability and Toxicity of Silver Nanoparticles in Aquatic Environment: A Review. <i>ACS Symposium Series</i> , 2013 , 165-179	0.4	8
173	Occurrence, transportation, monitoring and treatment of emerging micro-pollutants in waste water [A review from global views. <i>Microchemical Journal</i> , 2013 , 110, 292-300	4.8	233
172	Electrocatalytic activity of Pd nanoparticles supported on poly(3,4-ethylenedioxythiophene)-graphene hybrid for ethanol electrooxidation. <i>Journal of Solid State Electrochemistry</i> , 2013 , 17, 1039-1047	2.6	28
171	Visible light photodegradation of phenanthrene catalyzed by Fe(III)-smectite: role of soil organic matter. <i>Journal of Hazardous Materials</i> , 2013 , 256-257, 16-23	12.8	21
170	Selective removal of mercury ions using a chitosan poly(vinyl alcohol) hydrogel adsorbent with three-dimensional network structure. <i>Chemical Engineering Journal</i> , 2013 , 228, 232-242	14.7	90
169	Photoinduced Topotactic Growth of Bismuth Nanoparticles from Bulk SrBi2Ta2O9. <i>Chemistry of Materials</i> , 2013 , 25, 2045-2050	9.6	28
168	Kinetics and mechanism of oxidation of tryptophan by ferrate(VI). <i>Environmental Science & Environmental Science & Technology</i> , 2013 , 47, 4572-80	10.3	67
167	Tuning activities of K1.9Na0.1Ta2O6[2H2O nanocrystals in photocatalysis by controlling exposed facets. <i>ACS Applied Materials & Amp; Interfaces</i> , 2013 , 5, 10260-5	9.5	15
166	Magnetic Bimetallic Fe/Ag Nanoparticles: Decontamination and Antimicrobial Agents. <i>ACS Symposium Series</i> , 2013 , 193-209	0.4	6
165	Cysteine-modified orange peel for removal of Cu(II) from aqueous solutions. <i>Water Science and Technology</i> , 2013 , 67, 2444-50	2.2	3
164	Kinetics and mechanism of formation and destruction of N-nitrosodimethylamine in water IA review. <i>Separation and Purification Technology</i> , 2012 , 88, 1-10	8.3	38
163	Synthesis and photocatalytic activity of ferrites under visible light: A review. <i>Separation and Purification Technology</i> , 2012 , 87, 1-14	8.3	536
162	Degradation of anionic and cationic surfactants in a monolithic swirl-flow photoreactor. <i>Separation and Purification Technology</i> , 2012 , 92, 43-49	8.3	11
161	Development of a rapid method for the determination and confirmation of nitroimidazoles in six matrices by fast liquid chromatography-tandem mass spectrometry. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2012 , 64-65, 40-8	3.5	38
160	Mesoporous zinc ferrite: synthesis, characterization, and photocatalytic activity with H2O2/visible light. <i>Journal of Hazardous Materials</i> , 2012 , 211-212, 95-103	12.8	155
159	Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate(VI)/(III) composite. <i>Journal of Hazardous Materials</i> , 2012 , 211-212, 126-30	12.8	35
158	Destruction of microcystins by conventional and advanced oxidation processes: A review. <i>Separation and Purification Technology</i> , 2012 , 91, 3-17	8.3	156
157	Reactivity of chlorine dioxide with amino acids, peptides, and proteins. <i>Environmental Chemistry Letters</i> , 2012 , 10, 255-264	13.3	51

156	Effect of groundwater geochemistry on pentachlorophenol remediation by smectite-templated nanosized Pd0/Fe0. <i>Environmental Science and Pollution Research</i> , 2012 , 19, 3498-505	5.1	9
155	Green synthesis of shape-defined anatase TiO2 nanocrystals wholly exposed with {001} and {100} facets. <i>Chemical Communications</i> , 2012 , 48, 11736-8	5.8	58
154	Electrochemical fabrication of long-term stable Pt-loaded PEDOT/graphene composites for ethanol electrooxidation. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 14085-14093	6.7	53
153	Simultaneous determination of eight corticosteroids in bovine tissues using liquid chromatography-tandem mass spectrometry. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2012 , 906, 75-84	3.2	25
152	Free-standing poly[poly(N-vinyl carbazole)]-supported Pt-based catalysts with enhanced performance for methanol electro-oxidation in alkaline medium. <i>Fuel</i> , 2012 , 102, 560-566	7.1	10
151	The effects of monovalent and divalent cations on the stability of silver nanoparticles formed from direct reduction of silver ions by Suwannee River humic acid/natural organic matter. <i>Science of the Total Environment</i> , 2012 , 441, 277-89	10.2	70
150	Highly efficient electrocatalytic performance based on Pt nanoflowers modified reduced graphene oxide/carbon cloth electrode. <i>Journal of Materials Chemistry</i> , 2012 , 22, 13707		118
149	Graft polymerization and plasma treatment of polymer membranes for fouling reduction: a review. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 1713-27	2.3	47
148	MBsbauer study of peroxynitrito complex formation with FeIII-chelates. <i>Hyperfine Interactions</i> , 2012 , 205, 17-21	0.8	
147	Adsorption and dechlorination of 2,4-dichlorophenol (2,4-DCP) on a multi-functional organo-smectite templated zero-valent iron composite. <i>Chemical Engineering Journal</i> , 2012 , 191, 202-2	0 9 4.7	39
146	Kinetics of the oxidation of sucralose and related carbohydrates by ferrate(VI). <i>Chemosphere</i> , 2012 , 87, 644-8	8.4	61
145	Photodegradation of phenanthrene on cation-modified clays under visible light. <i>Applied Catalysis B: Environmental</i> , 2012 , 123-124, 43-51	21.8	67
144	Determination of ng/mL levetiracetam using ultra-high-performance liquid chromatography-photodiode absorbance. <i>Journal of Chromatographic Science</i> , 2012 , 50, 253-8	1.4	22
143	Analysis of sub g/kg lincomycin in honey, muscle, milk, and eggs using fast liquid chromatography-tandem mass spectrometry. <i>Journal of Chromatographic Science</i> , 2012 , 50, 190-8	1.4	13
142	Methodologies for the analytical determination of ferrate(VI): a review. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2011 , 46, 453-60	2.3	85
141	A Simple Potentiometric Titration Method to Determine Concentration of Ferrate(VI) in Strong Alkaline Solutions. <i>Analytical Letters</i> , 2011 , 44, 1333-1340	2.2	9
140	Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. <i>Environmental Science & Environmental Science & Environme</i>	10.3	240
139	Facile template-free synthesis of pine needle-like Pd micro/nano-leaves and their associated electro-catalytic activities toward oxidation of formic acid. <i>Nanoscale Research Letters</i> , 2011 , 6, 381	5	13

138	Effect of deposition potential on the structure and electrocatalytic behavior of Pt micro/nanoparticles. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 15052-15059	6.7	35
137	Mechanisms of oxidation of organosulfur compounds by ferrate(VI). <i>Chemosphere</i> , 2011 , 82, 1083-9	8.4	93
136	Oxidation of trimethoprim by ferrate(VI): kinetics, products, and antibacterial activity. <i>Environmental Science & Environmental Science & Environment</i>	10.3	103
135	Determination of submillimolar concentration of ferrate(VI) in alkaline solutions by amperometric titration. <i>Open Chemistry</i> , 2011 , 9, 808-812	1.6	3
134	Removal of Cyanide in Ni(II) Lyanide, Ni(II) Lyanide EDTA, and Electroplating Rinse Wastewater by Ferrate(VI). <i>Water, Air, and Soil Pollution</i> , 2011 , 219, 527-534	2.6	9
133	High efficient electrooxidation of formic acid at a novel PtIhdole composite catalyst prepared by electrochemical self-assembly. <i>Journal of Power Sources</i> , 2011 , 196, 1118-1122	8.9	17
132	A new reactor coupling heterogeneous Fenton-like catalytic oxidation with membrane separation for degradation of organic pollutants. <i>Journal of Chemical Technology and Biotechnology</i> , 2011 , 86, 148	8 ³ 1494	. 22
131	Mechanisms and efficiency of the simultaneous removal of metals and cyanides by using ferrate(VI): crucial roles of nanocrystalline iron(III) oxyhydroxides and metal carbonates. <i>Chemistry - A European Journal</i> , 2011 , 17, 10097-105	4.8	58
130	Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. <i>Advances in Colloid and Interface Science</i> , 2011 , 166, 119-35	14.3	483
129	Pd(II) Catalyzed Oxidative Degradation of Paracetamol by Chloramine-T in Acidic and Alkaline Media. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 8407-8419	3.9	11
128	A congruently melting and deep UV nonlinear optical material: Li3Cs2B5O10. <i>Journal of Materials Chemistry</i> , 2011 , 21, 2890		92
127	High efficient electrocatalytic oxidation of formic acid at Pt dispersed on porous poly(o-methoxyaniline). <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 6414-6421	6.7	44
126	Oxidation of inorganic contaminants by ferrates (VI, V, and IV)kinetics and mechanisms: a review. Journal of Environmental Management, 2011 , 92, 1051-73	7.9	181
125	Development and validation of a method for determination of corticosteroids in pig fat using liquid chromatography-tandem mass spectrometry. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2011 , 879, 403-10	3.2	23
124	A coupling process of membrane separation and heterogeneous Fenton-like catalytic oxidation for treatment of acid orange II-containing wastewater. <i>Separation and Purification Technology</i> , 2011 , 80, 45-51	8.3	29
123	Oxidation of X-ray compound ditrizoic acid by ferrate(VI). <i>Environmental Technology (United Kingdom)</i> , 2011 , 32, 261-7	2.6	15
122	Oxidation of inorganic compounds by Ferrate(VI) and Ferrate(V): one-electron and two-electron transfer steps. <i>Environmental Science & Environmental S</i>	10.3	159
121	Oxidation of Amino Acids, Peptides and Proteins by Ozone: A Review. <i>Ozone: Science and Engineering</i> , 2010 , 32, 81-90	2.4	112

120	Solubility of Ferrate(VI) in NaOHROH Mixtures at Different Temperatures. <i>Journal of Chemical & Engineering Data</i> , 2010 , 55, 5594-5597	2.8	10
119	Ferrate(VI) oxidation of glycine and glycylglycine: kinetics and products. Water Research, 2010, 44, 927-	35 2.5	77
118	Oxidation of nitrogen-containing pollutants by novel ferrate(VI) technology: a review. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2010 , 45, 645-67	2.3	109
117	Simultaneous determination of corticosteroids, androgens, and progesterone in river water by liquid chromatography-tandem mass spectrometry. <i>Chemosphere</i> , 2010 , 78, 972-9	8.4	95
116	Photocatalytic degradation of nonionic surfactant, Brij 35 in aqueous TiO2 suspensions. <i>Chemosphere</i> , 2010 , 79, 205-9	8.4	41
115	Quantitative determination of corticosteroids in bovine milk using mixed-mode polymeric strong cation exchange solid-phase extraction and liquid chromatography-tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2010, 53, 919-28	3.5	40
114	The Kinetics of the Interaction Between Iron(III)-Ethylenediaminetetraacetate and Peroxynitrite. <i>Aquatic Geochemistry</i> , 2010 , 16, 483-490	1.7	4
113	Dissociation Constants of Protonated Oxidized Glutathione in Seawater Media at Different Salinities. <i>Aquatic Geochemistry</i> , 2010 , 16, 447-466	1.7	12
112	Ferrate(VI) enhanced photocatalytic oxidation of pollutants in aqueous TiO2 suspensions. <i>Environmental Science and Pollution Research</i> , 2010 , 17, 453-61	5.1	43
111	The influence of electrolyte composition on electrochemical ferrate(VI) synthesis. Part I: anodic dissolution kinetics of pure iron. <i>Journal of Applied Electrochemistry</i> , 2010 , 40, 1019-1028	2.6	21
110	Kinetic study of the ruthenium(III)-catalyzed oxidation of glycine by N-bromophthalimide in acidic medium. <i>Transition Metal Chemistry</i> , 2010 , 35, 407-414	2.1	14
109	A novel reusable platinum nanocatalyst. <i>Materials Chemistry and Physics</i> , 2010 , 122, 10-14	4.4	12
108	Enhanced electrocatalytic performance for isopropanol oxidation on PdAu nanoparticles dispersed on poly(p-phenylene) prepared from biphenyl. <i>Materials Chemistry and Physics</i> , 2010 , 123, 390	04345	21
107	Quantification of corticosteroids in bovine urine using selective solid phase extraction and reversed-phase liquid chromatography/tandem mass spectrometry. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2010 , 878, 1471-9	3.2	28
106	High efficient electrocatalytic oxidation of methanol on Pt/polyindoles composite catalysts. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 3270-3279	6.7	90
105	Enhanced electrocatalytic performance for methanol oxidation on PtIIiO2/ITO electrode under UV illumination. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 13290-13297	6.7	76
104	One-step electrodeposition of platinum nanoflowers and their high efficient catalytic activity for methanol electro-oxidation. <i>Electrochemistry Communications</i> , 2010 , 12, 882-885	5.1	100
103	A nanocrystalline hematite film prepared from iron(III) chloride precursor. <i>Thin Solid Films</i> , 2010 , 518, 5916-5919	2.2	10

102	Elimination of sludge odor by oxidizing sulfur-containing compounds with ferrate(VI). <i>Environmental Science & Environmental S</i>	10.3	73
101	Confocal laser Raman microspectroscopy of biomineralization foci in UMR 106 osteoblastic cultures reveals temporally synchronized protein changes preceding and accompanying mineral crystal deposition. <i>Journal of Biological Chemistry</i> , 2009 , 284, 7100-13	5.4	41
100	Transformation of Solid Potassium Ferrate(VI) (K2FeO4): Mechanism and Kinetic Effect of Air Humidity. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 1060-1067	2.3	21
99	Kinetics of the oxidation of endocrine disruptor nonylphenol by ferrate(VI). <i>Environmental Chemistry Letters</i> , 2009 , 7, 115-119	13.3	39
98	Research progress in the electrochemical synthesis of ferrate(VI). <i>Electrochimica Acta</i> , 2009 , 54, 2673-2	26 8.3 7	106
97	Kinetics and Mechanism of Ru(III)-Catalyzed Oxidation of Paracetamol by Chloramine-T in Aqueous Acidic Medium. <i>Catalysis Letters</i> , 2009 , 132, 285-291	2.8	19
96	A Novel Oxidation of Valine by N-Bromophthalimide in the Presence of Ruthenium(III) Chloride as a Homogeneous Catalyst. <i>Catalysis Letters</i> , 2009 , 131, 98-104	2.8	15
95	Kinetics and mechanism of oxidation of EAlanine by N-bromophthalimide in the presence of Ru(III) chloride as homogenous catalyst in acidic medium. <i>Transition Metal Chemistry</i> , 2009 , 34, 521-528	2.1	15
94	Silver nanoparticles: green synthesis and their antimicrobial activities. <i>Advances in Colloid and Interface Science</i> , 2009 , 145, 83-96	14.3	2615
93	Removal of arsenite by Fe(VI), Fe(VI)/Fe(III), and Fe(VI)/Al(III) salts: effect of pH and anions. <i>Journal of Hazardous Materials</i> , 2009 , 169, 339-44	12.8	74
92	Reduction of oxyiron(V) by sulfite and thiosulfate in aqueous solution. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 8901-6	2.8	18
91	Aquatic arsenic: toxicity, speciation, transformations, and remediation. <i>Environment International</i> , 2009 , 35, 743-59	12.9	784
90	Nonylphenol, octylphenol, and bisphenol-A in the aquatic environment: a review on occurrence, fate, and treatment. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2009 , 44, 423-42	2.3	162
89	Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environmenta review. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2009 , 44, 1485-95	2.3	234
88	Oxidation of octylphenol by ferrate(VI). <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2009 , 44, 62-6	2.3	28
87	Reduction of ferrate(VI) and oxidation of cyanate in a Fe(VI)-TiO2-UV-NCO- system. <i>Chemosphere</i> , 2008 , 72, 1694-9	8.4	18
86	Oxidative transformations of environmental pharmaceuticals by ClDClODOpand Fe(VI): kinetics assessment. <i>Chemosphere</i> , 2008 , 73, 1379-86	8.4	167
85	Kinetics of the reaction of aqueous iron(vi) (FeVIO42-) with ethylenediaminetetraacetic acid. <i>Dalton Transactions</i> , 2008 , 1883-7	4.3	18

(2007-2008)

84	Effect of ethylenediaminetetraacetate on the oxidation of cyanide in an electrochemical process. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 295-9	2.3	8
83	Ferrate(VI) oxidation of weak-acid dissociable cyanides. <i>Environmental Science & Environmental Scienc</i>	10.3	64
82	Ferrate(VI) oxidation of endocrine disruptors and antimicrobials in water 2008, 57, 419-426		58
81	Water and time dependent interaction of iron(III) with indole-3-acetic acid. <i>Structural Chemistry</i> , 2008 , 19, 109-114	1.8	11
80	Removal of Cyanide and Zinctivanide Complex by an Ion-Exchange Process. <i>Water, Air, and Soil Pollution</i> , 2008 , 194, 179-183	2.6	17
79	Effect of Ionic Strength and Temperature on the Protonation of Oxidized Glutathione. <i>Journal of Solution Chemistry</i> , 2008 , 37, 1245-1259	1.8	7
78	Iron chelates: a challenge to chemists and M\(\mathbb{B}\)sbauer spectroscopists. <i>Hyperfine Interactions</i> , 2008 , 182, 77-86	0.8	6
77	Ferrate(VI) and ferrate(V) oxidation of cyanide, thiocyanate, and copper(I) cyanide. <i>Radiation Physics and Chemistry</i> , 2008 , 77, 761-767	2.5	58
76	The cyclic voltammetric study of ferrate(VI) formation in a molten Na/K hydroxide mixture. <i>Electrochimica Acta</i> , 2008 , 54, 203-208	6.7	19
75	Photocatalytic oxidation of cyanide in aqueous titanium dioxide suspensions: Effect of ethylenediaminetetraacetate. <i>Solar Energy</i> , 2008 , 82, 1031-1036	6.8	34
74	Thermal stability of the FeIIIEDTA complex in its monomeric form. <i>Thermochimica Acta</i> , 2008 , 479, 53-5	82.9	12
73	Reactivity of ferrate(V) with aminopolycarboxylates in alkaline medium: A premix pulse radiolysis. <i>Inorganica Chimica Acta</i> , 2008 , 361, 1041-1046	2.7	16
72	MBsbauer characterization and in situ monitoring of thermal decomposition of potassium ferrate(VI), K2FeO4 in static air conditions. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 4280-6	3.4	23
71	Formation of iron(VI) in ozonalysis of iron(III) in alkaline solution. <i>Inorganica Chimica Acta</i> , 2007 , 360, 2789-2791	2.7	35
70	Dissociation constants of protonated methionine species in seawater media. <i>Marine Chemistry</i> , 2007 , 106, 463-470	3.7	4
69	MBsbauer study of the autoxidation of ethylenediaminetetraacetato-ferrate(II). <i>Structural Chemistry</i> , 2007 , 18, 717-722	1.8	2
68	Disinfection performance of Fe(VI) in water and wastewater: a review. <i>Water Science and Technology</i> , 2007 , 55, 225-32	2.2	119
67	Polycyclic aromatic hydrocarbons (PAHs) in surface waters of Rūkevei-Sorokstī Danube Branch, Hungary. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2007 , 42, 231-40	2.3	11

66	Ferrate(VI) oxidation of zinc-cyanide complex. Chemosphere, 2007, 69, 729-35	8.4	54
65	Review of kinetics of chemical and photocatalytical oxidation of Arsenic(III) as influenced by pH. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007 , 42, 997-1004	2.3	63
64	Monofluorinated Polycyclic Aromatic Hydrocarbons: Surrogate Standards for HPLC Analysis of Surface Water and Sediment Samples. <i>Journal of Liquid Chromatography and Related Technologies</i> , 2007 , 31, 240-249	1.3	0
63	Oxidation of sulfonamide antimicrobials by ferrate(VI) [Fe(VI)O4(2-)]. <i>Environmental Science & Environmental & Enviro</i>	10.3	187
62	Kinetic assessment of the potassium ferrate(VI) oxidation of antibacterial drug sulfamethoxazole. <i>Chemosphere</i> , 2006 , 62, 128-34	8.4	75
61	Ferrate(VI): green chemistry oxidant for degradation of cationic surfactant. <i>Chemosphere</i> , 2006 , 63, 178	358-240	56
60	Electrochemical formation of ferrate(VI) in a molten NaOHROH system. <i>Electrochemistry Communications</i> , 2006 , 8, 1737-1740	5.1	32
59	Thermal decomposition of iron(VI) oxides, K2FeO4 and BaFeO4, in an inert atmosphere. <i>Journal of Solid State Chemistry</i> , 2006 , 179, 1426-1433	3.3	19
58	Dissociation constants of protonated cysteine species in seawater media. <i>Marine Chemistry</i> , 2006 , 99, 52-61	3.7	14
57	Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 16248-53	3.4	1781
<i>57 56</i>		3.4	1781 57
	Physical Chemistry B, 2006 , 110, 16248-53		
56	Physical Chemistry B, 2006, 110, 16248-53 Ferrate(VI) oxidation of ibuprofen: A kinetic study. Environmental Chemistry Letters, 2006, 3, 182-185 Desulfurization of Mexican heavy oil by sulfate-reducing bacteria. Journal of Environmental Science	13.3	57 5
56 55	Physical Chemistry B, 2006, 110, 16248-53 Ferrate(VI) oxidation of ibuprofen: A kinetic study. Environmental Chemistry Letters, 2006, 3, 182-185 Desulfurization of Mexican heavy oil by sulfate-reducing bacteria. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40, 553-8 Iron(VI) and iron(V) oxidation of copper(I) cyanide. Environmental Science & Company 2005,	13.3	57 5
565554	Physical Chemistry B, 2006, 110, 16248-53 Ferrate(VI) oxidation of ibuprofen: A kinetic study. Environmental Chemistry Letters, 2006, 3, 182-185 Desulfurization of Mexican heavy oil by sulfate-reducing bacteria. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40, 553-8 Iron(VI) and iron(V) oxidation of copper(I) cyanide. Environmental Science & Danube branch, Hungary, 39, 3849-54 Octylphenol and nonylphenol in surface water of Rikevei-Soroksii Danube branch, Hungary, Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental	13.3 2.3 10.3	57 5 74
56555453	Physical Chemistry B, 2006, 110, 16248-53 Ferrate(VI) oxidation of ibuprofen: A kinetic study. Environmental Chemistry Letters, 2006, 3, 182-185 Desulfurization of Mexican heavy oil by sulfate-reducing bacteria. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40, 553-8 Iron(VI) and iron(V) oxidation of copper(I) cyanide. Environmental Science & Danube branch, Hungary, 39, 3849-54 Octylphenol and nonylphenol in surface water of Rikevei-Soroksii Danube branch, Hungary, Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40, 1679-88 Photocatalytic oxidation of arsenic(III): evidence of hydroxyl radicals. Environmental Science & Danube Science &	13.3 2.3 10.3 2.3	57 5 74
5655545352	Physical Chemistry B, 2006, 110, 16248-53 Ferrate(VI) oxidation of ibuprofen: A kinetic study. Environmental Chemistry Letters, 2006, 3, 182-185 Desulfurization of Mexican heavy oil by sulfate-reducing bacteria. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40, 553-8 Iron(VI) and iron(V) oxidation of copper(I) cyanide. Environmental Science & Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40, 1679-88 Photocatalytic oxidation of arsenic(III): evidence of hydroxyl radicals. Environmental Science & Environmental & Engineering & E	13.3 2.3 10.3 2.3	57 5 74 12 259

(2001-2005)

48	Heterogeneous photocatalytic reduction of Fe(VI) in UV-irradiated titania suspensions: effect of ammonia. <i>Journal of Applied Electrochemistry</i> , 2005 , 35, 775-781	2.6	18
47	Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in mosses (Hypnum cupressiforme) in Hungary. <i>Science of the Total Environment</i> , 2004 , 330, 89-99	10.2	57
46	Major and trace elements in sediments of the Campeche Sound, southeast Gulf of Mexico. <i>Marine Pollution Bulletin</i> , 2004 , 48, 87-90	6.7	28
45	Adsorption of arsenate and arsenite on titanium dioxide suspensions. <i>Journal of Colloid and Interface Science</i> , 2004 , 278, 270-5	9.3	346
44	Dissociation Constants for Citric Acid in NaCl and KCl Solutions and their Mixtures at 25 °C. <i>Journal of Solution Chemistry</i> , 2004 , 33, 1349-1366	1.8	13
43	The kinetics of the complex formation between iron(III) athylenediaminetetraacetate and hydrogen peroxide in aqueous solution. <i>Inorganica Chimica Acta</i> , 2004 , 357, 3583-3587	2.7	11
42	Oxidation of thiocyanate by iron(V) in alkaline medium. <i>Inorganica Chimica Acta</i> , 2004 , 357, 4587-4591	2.7	20
41	Iron(III) Oxide Nanoparticles in the Thermally Induced Oxidative Decomposition of Prussian Blue, Fe4[Fe(CN)6]3. <i>Crystal Growth and Design</i> , 2004 , 4, 1317-1325	3.5	83
40	Heterogeneous photocatalytic reduction of ferrate(VI) in UV-irradiated titania suspensions: Role in enhancing destruction of nitrogen-containing pollutants. <i>International Journal of Photoenergy</i> , 2003 , 5, 183-190	2.1	10
39	Dissociation constants of protonated methionine species in NaCl media. <i>Biophysical Chemistry</i> , 2003 , 105, 79-87	3.5	13
38	Concentration of polycyclic aromatic hydrocarbons (PAHs) in moss (Hypnum cupressiforme) from Hungary. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2003 , 38, 2613-9	2.3	7
37	Ferrate(V) oxidation of pollutants: a premix pulse radiolysis study. <i>Radiation Physics and Chemistry</i> , 2002 , 65, 349-355	2.5	39
36	Concentrations of elements and metals in sediments of the southeastern Gulf of Mexico. <i>Environmental Geology</i> , 2002 , 42, 41-46		17
35	Characterization and Degradation of Petroleum Hydrocarbons Following an Oil Spill into a Coastal Environment of South Texas, U.S.A <i>Water, Air, and Soil Pollution</i> , 2002 , 134, 111-127	2.6	12
34	Dissociation Constants of Protonated Cysteine Species in NaCl Media. <i>Journal of Solution Chemistry</i> , 2002 , 31, 783-792	1.8	19
33	Iron(VI) and iron(V) oxidation of thiocyanate. Environmental Science & Environ	5 10.3	69
32	Potassium ferrate(VI): an environmentally friendly oxidant. <i>Journal of Environmental Management</i> , 2002 , 6, 143-156		340
31	Metals in fish and shrimp of the Campeche Sound, Gulf of Mexico. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2001 , 67, 756-62	2.7	22

30	Dissociation constants of the monoprotic ferrate(VI) ion in NaCl media. <i>Physical Chemistry Chemical Physics</i> , 2001 , 3, 2059-2062	3.6	110
29	Sequential One-Electron Reduction of Fe(V) to Fe(III) by Cyanide in Alkaline Medium. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 11529-11532	3.4	54
28	Heterogeneous Photocatalytic Reduction of Ferrate(VI) in UV-Irradiated Titania Suspensions. <i>Langmuir</i> , 2001 , 17, 4598-4601	4	38
27	Ferrate(V) oxidation of thiourea: a premix pulse radiolysis study. <i>Inorganica Chimica Acta</i> , 2000 , 311, 40-	44 ₇	22
26	Oxidation of thioacetamide by ferrate(VI). Marine Chemistry, 2000, 70, 235-242	3.7	45
25	Seasonal Variability of the Texas B rown Tide[[Aureoumbra lagunensis] in Relation to Environmental Parameters. <i>Estuarine, Coastal and Shelf Science</i> , 1999 , 48, 565-574	2.9	12
24	Heavy Metals in a Coastal Lagoon of the Gulf of Mexico. <i>Marine Pollution Bulletin</i> , 1999 , 38, 479-485	6.7	18
23	Metals in Sediments of the Upper Laguna Madre. <i>Marine Pollution Bulletin</i> , 1999 , 38, 1221-1226	6.7	32
22	Metal ions in water and sediments of the Pom-Atasta Lagoon, Mexico. <i>Environment International</i> , 1999 , 25, 599-604	12.9	10
21	Ferrate(VI) Oxidation of Thiourea. Environmental Science & Environmental Science & Invironmental Scien	10.3	66
20	Investigation on composite Au /TiO2 nanoparticles (I). Science Bulletin, 1998, 43, 210-213		2
19	Dissolved metals in Alvarado Lagoon, Mexico. Environment International, 1998, 24, 721-727	12.9	12
18	Ferrate(VI) Oxidation of Aqueous Cyanide. Environmental Science & amp; Technology, 1998, 32, 2608-261	3 10.3	98
17	Ferrate(VI) Oxidation of Hydrogen Sulfide. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	98
16	Petroleum hydrocarbons in sediments of Upper Laguna Madre. <i>Marine Pollution Bulletin</i> , 1997 , 34, 229-2	28. 4	12
15	Trace metal species in aquatic samples of the Tabasco Lagoons, Mexico. <i>Environment International</i> , 1996 , 22, 377-382	12.9	2
14	Reactivity of ferrate(V) with carboxylic acids: A pre-mix pulse radiolysis study. <i>Radiation Physics and Chemistry</i> , 1994 , 44, 479-484	2.5	60
13	Trace and heavy metals in San Andres Lagoon, Tamaulipas, Mexico. <i>Environment International</i> , 1993 , 19, 71-77	12.9	8

LIST OF PUBLICATIONS

12	Effect of ionic interactions on the rates of reduction of Cu(II) with H2O2 in aqueous solutions. Journal of Solution Chemistry, 1992 , 21, 1271-1287	1.8	33	
11	The rate of reduction of copper(II) with hydrogen peroxide in seawater. <i>Marine Chemistry</i> , 1991 , 36, 71-	83 .7	52	
10	Reactivity of ferrate(VI) and ferrate(V) with amino acids. <i>Inorganic Chemistry</i> , 1991 , 30, 4306-4310	5.1	115	
9	Equilibrium constants for the formation of Cu(I) halide complexes. <i>Journal of Solution Chemistry</i> , 1990 , 19, 375-390	1.8	26	
8	The oxidation of Cu(I) with H2O2 in natural waters. <i>Geochimica Et Cosmochimica Acta</i> , 1989 , 53, 2269-22	27565	39	
7	Effect of ionic interactions on the rates of oxidation of Cu(I) with O2 in natural waters. <i>Marine Chemistry</i> , 1988 , 25, 141-161	3.7	21	
6	The oxidation of Cu(I) in electrolyte solutions. <i>Journal of Solution Chemistry</i> , 1988 , 17, 581-599	1.8	32	
5	Determining the stability constant of copper(I) halide complexes from kinetic measurements. <i>Inorganic Chemistry</i> , 1988 , 27, 3256-3259	5.1	10	
4	Oxidation of copper(I) in seawater. Environmental Science & Environmental Scie	10.3	65	
3	The effect of ionic interaction on the rates of oxidation in natural waters. <i>Marine Chemistry</i> , 1987 , 22, 179-191	3.7	19	
2	Optical chemosensors for the gas phase detection of aldehydes: mechanism, material design, and application. <i>Materials Advances</i> ,	3.3	4	
1	Bisphenols promote the conjugative transfer of antibiotic resistance genes without damaging cell membrane. <i>Environmental Chemistry Letters</i> ,1	13.3	1	