List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5258279/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 2009, 145, 83-96.	7.0	3,074
2	Silver Colloid Nanoparticles:Â Synthesis, Characterization, and Their Antibacterial Activity. Journal of Physical Chemistry B, 2006, 110, 16248-16253.	1.2	2,012
3	Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environment International, 2009, 35, 743-759.	4.8	913
4	Synthesis and photocatalytic activity of ferrites under visible light: A review. Separation and Purification Technology, 2012, 87, 1-14.	3.9	667
5	A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere, 2016, 150, 702-714.	4.2	557
6	Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives. Advances in Colloid and Interface Science, 2011, 166, 119-135.	7.0	547
7	Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Applied Catalysis B: Environmental, 2016, 190, 26-35.	10.8	505
8	Selective photocatalytic N ₂ fixation dependent on g-C ₃ N ₄ induced by nitrogen vacancies. Journal of Materials Chemistry A, 2015, 3, 23435-23441.	5.2	495
9	Self-Assembly of Perylene Imide Molecules into 1D Nanostructures: Methods, Morphologies, and Applications. Chemical Reviews, 2015, 115, 11967-11998.	23.0	474
10	Potassium ferrate(VI): an environmentally friendly oxidant. Journal of Environmental Management, 2002, 6, 143-156.	1.7	415
11	Adsorption of arsenate and arsenite on titanium dioxide suspensions. Journal of Colloid and Interface Science, 2004, 278, 270-275.	5.0	382
12	Water-stable metal-organic frameworks for aqueous removal of heavy metals and radionuclides: A review. Chemosphere, 2018, 209, 783-800.	4.2	366
13	Natural inorganic nanoparticles – formation, fate, and toxicity in the environment. Chemical Society Reviews, 2015, 44, 8410-8423.	18.7	342
14	Removal of microplastics from the environment. A review. Environmental Chemistry Letters, 2020, 18, 807-828.	8.3	341
15	Ferrates: Greener Oxidants with Multimodal Action in Water Treatment Technologies. Accounts of Chemical Research, 2015, 48, 182-191.	7.6	339
16	Organic-coated silver nanoparticles in biological and environmental conditions: Fate, stability and toxicity. Advances in Colloid and Interface Science, 2014, 204, 15-34.	7.0	320
17	Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes: A review. Journal of Hazardous Materials, 2019, 372, 3-16.	6.5	318
18	Clay mineral adsorbents for heavy metal removal from wastewater: a review. Environmental Chemistry Letters, 2019, 17, 629-654.	8.3	314

#	Article	IF	CITATIONS
19	Nitrogen-doped graphene and graphene quantum dots: A review onsynthesis and applications in energy, sensors and environment. Advances in Colloid and Interface Science, 2018, 259, 44-64.	7.0	313
20	Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: Effect of electrode materials. Applied Catalysis B: Environmental, 2013, 140-141, 92-97.	10.8	304
21	Photocatalytic Oxidation of Arsenic(III):  Evidence of Hydroxyl Radicals. Environmental Science & Technology, 2005, 39, 1827-1834.	4.6	299
22	Advanced activation of persulfate by polymeric g-C3N4 based photocatalysts for environmental remediation: A review. Journal of Hazardous Materials, 2021, 413, 125324.	6.5	293
23	Ferrate(VI) and ferrate(V) oxidation of organic compounds: Kinetics and mechanism. Coordination Chemistry Reviews, 2013, 257, 495-510.	9.5	289
24	Occurrence, transportation, monitoring and treatment of emerging micro-pollutants in waste water — A review from global views. Microchemical Journal, 2013, 110, 292-300.	2.3	286
25	Nitrogen-sulfur co-doped industrial graphene as an efficient peroxymonosulfate activator: Singlet oxygen-dominated catalytic degradation of organic contaminants. Applied Catalysis B: Environmental, 2019, 251, 335-345.	10.8	286
26	Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk. Environmental Chemistry Letters, 2015, 13, 381-394.	8.3	280
27	Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic–inorganic trihalide perovskites. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8910-8915.	3.3	269
28	Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment—A Review. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2009, 44, 1485-1495.	0.9	268
29	Humic Acid-Induced Silver Nanoparticle Formation Under Environmentally Relevant Conditions. Environmental Science & Technology, 2011, 45, 3895-3901.	4.6	265
30	Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes. Environmental Chemistry Letters, 2018, 16, 947-967.	8.3	254
31	Oxidation of inorganic contaminants by ferrates (VI, V, and IV)–kinetics and mechanisms: A review. Journal of Environmental Management, 2011, 92, 1051-1073.	3.8	238
32	Removal of Nitric Oxide through Visible Light Photocatalysis by g-C ₃ N ₄ Modified with Perylene Imides. ACS Catalysis, 2016, 6, 6511-6519.	5.5	226
33	Oxidation of Sulfonamide Antimicrobials by Ferrate(VI) [FeVIO42-]. Environmental Science & Technology, 2006, 40, 7222-7227.	4.6	215
34	Review on High Valent Fe ^{VI} (Ferrate): A Sustainable Green Oxidant in Organic Chemistry and Transformation of Pharmaceuticals. ACS Sustainable Chemistry and Engineering, 2016, 4, 18-34.	3.2	214
35	CO2 photoreduction with H2O vapor on highly dispersed CeO2/TiO2 catalysts: Surface species and their reactivity. Journal of Catalysis, 2016, 337, 293-302.	3.1	212
36	Degradation of atrazine by ZnxCu1â^'xFe2O4 nanomaterial-catalyzed sulfite under UV–vis light irradiation: Green strategy to generate SO4â^'. Applied Catalysis B: Environmental, 2018, 221, 380-392.	10.8	212

#	Article	IF	CITATIONS
37	Management on the location and concentration of Ti3+ in anatase TiO2 for defects-induced visible-light photocatalysis. Applied Catalysis B: Environmental, 2015, 176-177, 354-362.	10.8	211
38	Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes: Access to Energy and Value-Added Chemicals. Frontiers in Chemistry, 2018, 6, 141.	1.8	208
39	Degradation of fluoroquinolone antibiotics by ferrate(VI): Effects of water constituents and oxidized products. Water Research, 2016, 103, 48-57.	5.3	206
40	Oxidation of Inorganic Compounds by Ferrate(VI) and Ferrate(V): One-Electron and Two-Electron Transfer Steps. Environmental Science & Technology, 2010, 44, 5148-5152.	4.6	198
41	Plasmonic Ag-TiO2â^'x nanocomposites for the photocatalytic removal of NO under visible light with high selectivity: The role of oxygen vacancies. Applied Catalysis B: Environmental, 2017, 204, 67-77.	10.8	197
42	Highly efficient and selective removal of mercury ions using hyperbranched polyethylenimine functionalized carboxymethyl chitosan composite adsorbent. Chemical Engineering Journal, 2019, 358, 253-263.	6.6	196
43	Two-channel photocatalytic production of H2O2 over g-C3N4 nanosheets modified with perylene imides. Journal of Catalysis, 2017, 352, 274-281.	3.1	193
44	Carbon vacancy regulated photoreduction of NO to N2 over ultrathin g-C3N4 nanosheets. Applied Catalysis B: Environmental, 2017, 218, 515-524.	10.8	190
45	Oxidative transformations of environmental pharmaceuticals by Cl2, ClO2, O3, and Fe(VI): Kinetics assessment. Chemosphere, 2008, 73, 1379-1386.	4.2	186
46	Ferrate(VI)-Induced Arsenite and Arsenate Removal by In Situ Structural Incorporation into Magnetic Iron(III) Oxide Nanoparticles. Environmental Science & Technology, 2013, 47, 3283-3292.	4.6	185
47	Nonylphenol, octylphenol, and bisphenol-A in the aquatic environment: A review on occurrence, fate, and treatment. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2009, 44, 423-442.	0.9	184
48	Mesoporous zinc ferrite: Synthesis, characterization, and photocatalytic activity with H2O2/visible light. Journal of Hazardous Materials, 2012, 211-212, 95-103.	6.5	183
49	Destruction of microcystins by conventional and advanced oxidation processes: A review. Separation and Purification Technology, 2012, 91, 3-17.	3.9	180
50	Plasmonic Hot Electrons from Oxygen Vacancies for Infrared Lightâ€Driven Catalytic CO ₂ Reduction on Bi ₂ O _{3â^²<i>x</i>} . Angewandte Chemie - International Edition, 2021, 60, 910-916.	7.2	171
51	Three-dimensional open CoMoOx/CoMoSx/CoSx nanobox electrocatalysts for efficient oxygen evolution reaction. Applied Catalysis B: Environmental, 2020, 265, 118605.	10.8	170
52	Size effect of Pt co-catalyst on photocatalytic efficiency of g-C3N4 for hydrogen evolution. Applied Surface Science, 2019, 464, 36-42.	3.1	166
53	Degradation of aqueous 2,4,4 $\hat{a}\in^2$ -Trihydroxybenzophenone by persulfate activated with nitrogen doped carbonaceous materials and the formation of dimer products. Water Research, 2018, 143, 176-187.	5.3	165
54	Silane-modified halloysite/Fe 3 O 4 nanocomposites: Simultaneous removal of Cr(VI) and Sb(V) and positive effects of Cr(VI) on Sb(V) adsorption. Chemical Engineering Journal, 2017, 311, 236-246.	6.6	158

#	Article	IF	CITATIONS
55	Interactions of Aqueous Ag ⁺ with Fulvic Acids: Mechanisms of Silver Nanoparticle Formation and Investigation of Stability. Environmental Science & Technology, 2013, 47, 757-764.	4.6	156
56	Cobalt ferrite nanoparticles with controlled composition-peroxymonosulfate mediated degradation of 2-phenylbenzimidazole-5-sulfonic acid. Applied Catalysis B: Environmental, 2018, 221, 266-279.	10.8	155
57	Accelerated Oxidation of Organic Contaminants by Ferrate(VI): The Overlooked Role of Reducing Additives. Environmental Science & amp; Technology, 2018, 52, 11319-11327.	4.6	150
58	Ultralow Ru doping induced interface engineering in MOF derived ruthenium-cobalt oxide hollow nanobox for efficient water oxidation electrocatalysis. Chemical Engineering Journal, 2021, 420, 129805.	6.6	149
59	Transformation of Polycyclic Aromatic Hydrocarbons and Formation of Environmentally Persistent Free Radicals on Modified Montmorillonite: The Role of Surface Metal Ions and Polycyclic Aromatic Hydrocarbon Molecular Properties. Environmental Science & Technology, 2018, 52, 5725-5733.	4.6	148
60	Magnetic graphene–carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification. Advances in Colloid and Interface Science, 2015, 225, 229-240.	7.0	147
61	Oxidation of Amino Acids, Peptides and Proteins by Ozone: A Review. Ozone: Science and Engineering, 2010, 32, 81-90.	1.4	146
62	A three-dimensional macroporous network structured chitosan/cellulose biocomposite sponge for rapid and selective removal of mercury(II) ions from aqueous solution. Chemical Engineering Journal, 2019, 363, 192-202.	6.6	146
63	Confining single-atom Pd on g-C3N4 with carbon vacancies towards enhanced photocatalytic NO conversion. Applied Catalysis B: Environmental, 2021, 284, 119683.	10.8	142
64	Effects of Atmospheric Pressure Plasmas on Isolated and Cellular DNA—A Review. International Journal of Molecular Sciences, 2015, 16, 2971-3016.	1.8	140
65	Biogeochemistry of selenium. A review. Environmental Chemistry Letters, 2015, 13, 49-58.	8.3	140
66	Size controllable synthesis of single-crystal ferroelectric Bi4Ti3O12 nanosheet dominated with {0 0 1} facets toward enhanced visible-light-driven photocatalytic activities. Applied Catalysis B: Environmental, 2014, 156-157, 35-43.	10.8	139
67	Oxygen-doping of ZnIn2S4 nanosheets towards boosted photocatalytic CO2 reduction. Journal of Energy Chemistry, 2021, 57, 1-9.	7.1	139
68	Facile Synthesis of Defective TiO2â^'x Nanocrystals with High Surface Area and Tailoring Bandgap for Visible-light Photocatalysis. Scientific Reports, 2015, 5, 15804.	1.6	138
69	Metal-mediated oxidation of fluoroquinolone antibiotics in water: A review on kinetics, transformation products, and toxicity assessment. Journal of Hazardous Materials, 2018, 344, 1136-1154.	6.5	138
70	Disinfection performance of Fe(VI) in water and wastewater: a review. Water Science and Technology, 2007, 55, 225-232.	1.2	136
71	Formation and Stabilization of Environmentally Persistent Free Radicals Induced by the Interaction of Anthracene with Fe(III)-Modified Clays. Environmental Science & Technology, 2016, 50, 6310-6319.	4.6	134
72	Adsorption and removal of tetracycline from water by petroleum coke-derived highly porous activated carbon. Journal of Environmental Chemical Engineering, 2015, 3, 1504-1512.	3.3	133

#	Article	IF	CITATIONS
73	Research progress in the electrochemical synthesis of ferrate(VI). Electrochimica Acta, 2009, 54, 2673-2683.	2.6	129
74	Selective photocatalytic CO2 reduction to CH4 over Pt/In2O3: Significant role of hydrogen adatom. Applied Catalysis B: Environmental, 2018, 226, 544-553.	10.8	129
75	Reactivity of ferrate(VI) and ferrate(V) with amino acids. Inorganic Chemistry, 1991, 30, 4306-4310.	1.9	128
76	Dissociation constants of the monoprotic ferrate(VI) ion in NaCl media. Physical Chemistry Chemical Physics, 2001, 3, 2059-2062.	1.3	128
77	Highly efficient electrocatalytic performance based on Pt nanoflowers modified reduced graphene oxide/carbon cloth electrode. Journal of Materials Chemistry, 2012, 22, 13707.	6.7	126
78	Oxygen vacancies induced visible-light photocatalytic activities of CaCu3Ti4O12 with controllable morphologies for antibiotic degradation. Applied Catalysis B: Environmental, 2018, 221, 422-432.	10.8	125
79	Strategic combination of N-doped graphene and g-C3N4: Efficient catalytic peroxymonosulfate-based oxidation of organic pollutants by non-radical-dominated processes. Applied Catalysis B: Environmental, 2020, 272, 119005.	10.8	125
80	Adsorption of antibiotics and iopromide onto single-walled and multi-walled carbon nanotubes. Chemical Engineering Journal, 2014, 255, 23-27.	6.6	124
81	Oxidation of Trimethoprim by Ferrate(VI): Kinetics, Products, and Antibacterial Activity. Environmental Science & Technology, 2011, 45, 10575-10581.	4.6	123
82	Enhanced photocatalytic hydrogen evolution along with byproducts suppressing over Z-scheme Cd Zn1â^'S/Au/g-C3N4 photocatalysts under visible light. Science Bulletin, 2017, 62, 602-609.	4.3	123
83	Oxidation of nitrogen-containing pollutants by novel ferrate(VI) technology: A review. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2010, 45, 645-667.	0.9	121
84	Formation and toxicity of brominated disinfection byproducts during chlorination and chloramination of water: A review. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2014, 49, 212-228.	0.7	119
85	Ferrate(VI)-Prompted Removal of Metals in Aqueous Media: Mechanistic Delineation of Enhanced Efficiency via Metal Entrenchment in Magnetic Oxides. Environmental Science & Technology, 2015, 49, 2319-2327.	4.6	118
86	Selective removal of mercury ions using a chitosan–poly(vinyl alcohol) hydrogel adsorbent with three-dimensional network structure. Chemical Engineering Journal, 2013, 228, 232-242.	6.6	116
87	One-step electrodeposition of platinum nanoflowers and their high efficient catalytic activity for methanol electro-oxidation. Electrochemistry Communications, 2010, 12, 882-885.	2.3	113
88	Simultaneous determination of corticosteroids, androgens, and progesterone in river water by liquid chromatography–tandem mass spectrometry. Chemosphere, 2010, 78, 972-979.	4.2	111
89	Preparation and characterization of chitosan–poly(vinyl alcohol)/bentonite nanocomposites for adsorption of Hg(II) ions. Chemical Engineering Journal, 2014, 251, 404-412.	6.6	110
90	Enhancement of visible-light-driven photocatalytic H 2 evolution from water over g-C 3 N 4 through combination with perylene diimide aggregates. Applied Catalysis A: General, 2015, 498, 63-68.	2.2	110

#	Article	IF	CITATIONS
91	Environmentally Persistent Free Radicals in Soils of Past Coking Sites: Distribution and Stabilization. Environmental Science & Technology, 2017, 51, 6000-6008.	4.6	110
92	Ferrate(VI) Oxidation of Aqueous Cyanide. Environmental Science & amp; Technology, 1998, 32, 2608-2613.	4.6	109
93	Ferrate promoted oxidative cleavage of sulfonamides: Kinetics and product formation under acidic conditions. Chemical Engineering Journal, 2015, 279, 307-316.	6.6	109
94	Synergistic effect of aqueous removal of fluoroquinolones by a combined use of peroxymonosulfate and ferrate(VI). Chemosphere, 2017, 177, 144-148.	4.2	109
95	Improved photocatalytic NO removal activity of SrTiO3 by using SrCO3 as a new co-catalyst. Applied Catalysis B: Environmental, 2018, 227, 24-34.	10.8	109
96	Oxidation of Pharmaceuticals by Ferrate(VI) in Hydrolyzed Urine: Effects of Major Inorganic Constituents. Environmental Science & Technology, 2019, 53, 5272-5281.	4.6	109
97	Near-infrared light to heat conversion in peroxydisulfate activation with MoS2: A new photo-activation process for water treatment. Water Research, 2021, 190, 116720.	5.3	109
98	Ferrate(VI) Oxidation of Hydrogen Sulfide. Environmental Science & Technology, 1997, 31, 2486-2491.	4.6	108
99	Sulfonamides and tetracyclines in livestock wastewater. Chemosphere, 2013, 91, 888-894.	4.2	108
100	Interactions between silver nanoparticles and other metal nanoparticles under environmentally relevant conditions: A review. Science of the Total Environment, 2019, 653, 1042-1051.	3.9	108
101	Visible-Light-Assisted Electrocatalytic Oxidation of Methanol Using Reduced Graphene Oxide Modified Pt Nanoflowers-TiO ₂ Nanotube Arrays. ACS Applied Materials & Interfaces, 2014, 6, 17753-17761.	4.0	107
102	Reductive and oxidative degradation of iopamidol, iodinated X-ray contrast media, by Fe(III)-oxalate under UV and visible light treatment. Water Research, 2014, 67, 144-153.	5.3	107
103	Methodologies for the analytical determination of ferrate(VI): A Review. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 453-460.	0.9	106
104	Photocatalytic CO2 reduction over SrTiO3: Correlation between surface structure and activity. Applied Surface Science, 2018, 447, 627-635.	3.1	105
105	Carbon quantum dots implanted CdS nanosheets: Efficient visible-light-driven photocatalytic reduction of Cr(VI) under saline conditions. Applied Catalysis B: Environmental, 2020, 262, 118306.	10.8	103
106	Mechanisms of oxidation of organosulfur compounds by ferrate(VI). Chemosphere, 2011, 82, 1083-1089.	4.2	102
107	Enhanced CO2 photoreduction activity of black TiO2â^ coated Cu nanoparticles under visible light irradiation: Role of metallic Cu. Applied Catalysis A: General, 2016, 510, 34-41.	2.2	102
108	High efficient electrocatalytic oxidation of methanol on Pt/polyindoles composite catalysts. International Journal of Hydrogen Energy, 2010, 35, 3270-3279.	3.8	100

#	Article	IF	CITATIONS
109	Switching of semiconducting behavior from n -type to p -type induced high photocatalytic NO removal activity in g-C 3 N 4. Applied Catalysis B: Environmental, 2017, 214, 46-56.	10.8	100
110	Oxidation of Microcystin-LR by Ferrate(VI): Kinetics, Degradation Pathways, and Toxicity Assessments. Environmental Science & Technology, 2014, 48, 12164-12172.	4.6	98
111	A Bulk Boron-Based Photocatalyst for Efficient Dechlorination: K ₃ B ₆ O ₁₀ Br. Chemistry of Materials, 2014, 26, 3169-3174.	3.2	97
112	Investigation of disinfection byproducts formation in ferrate(VI) pre-oxidation of NOM and its model compounds followed by chlorination. Journal of Hazardous Materials, 2015, 292, 197-204.	6.5	97
113	Supported single-atom catalysts: synthesis, characterization, properties, and applications. Environmental Chemistry Letters, 2018, 16, 477-505.	8.3	96
114	A congruently melting and deep UV nonlinear optical material: Li3Cs2B5O10. Journal of Materials Chemistry, 2011, 21, 2890.	6.7	95
115	Mechanistic Insight into the Effect of Metal Ions on Photogeneration of Reactive Species from Dissolved Organic Matter. Environmental Science & amp; Technology, 2019, 53, 5778-5786.	4.6	95
116	Oxidation of Sulfonamide Antibiotics of Six-Membered Heterocyclic Moiety by Ferrate(VI): Kinetics and Mechanistic Insight into SO ₂ Extrusion. Environmental Science & Technology, 2019, 53, 2695-2704.	4.6	95
117	Meso- and micro- porous composite carbons derived from humic acid for supercapacitors. Electrochimica Acta, 2014, 136, 504-512.	2.6	94
118	Enhanced oxidation of antibiotics by ferrate(VI)-sulfur(IV) system: Elucidating multi-oxidant mechanism. Chemical Engineering Journal, 2018, 341, 137-145.	6.6	90
119	Twoâ€Dimensional Layered Zinc Silicate Nanosheets with Excellent Photocatalytic Performance for Organic Pollutant Degradation and CO ₂ Conversion. Angewandte Chemie - International Edition, 2019, 58, 8103-8108.	7.2	90
120	Iron(III) Oxide Nanoparticles in the Thermally Induced Oxidative Decomposition of Prussian Blue, Fe4[Fe(CN)6]3. Crystal Growth and Design, 2004, 4, 1317-1325.	1.4	89
121	Removal of arsenite by Fe(VI), Fe(VI)/Fe(III), and Fe(VI)/Al(III) salts: Effect of pH and anions. Journal of Hazardous Materials, 2009, 169, 339-344.	6.5	89
122	Kinetic assessment of the potassium ferrate(VI) oxidation of antibacterial drug sulfamethoxazole. Chemosphere, 2006, 62, 128-134.	4.2	88
123	Layered nanostructured ferroelectric perovskite Bi ₅ FeTi ₃ O ₁₅ for visible light photodegradation of antibiotics. Journal of Materials Chemistry A, 2017, 5, 21275-21290.	5.2	88
124	Enhanced oxidative transformation of organic contaminants by activation of ferrate(VI): Possible involvement of FeV/FeIV species. Chemical Engineering Journal, 2017, 307, 513-517.	6.6	88
125	Ferrate(VI) oxidation of propranolol: Kinetics and products. Chemosphere, 2013, 91, 105-109.	4.2	86
126	The effects of monovalent and divalent cations on the stability of silver nanoparticles formed from direct reduction of silver ions by Suwannee River humic acid/natural organic matter. Science of the Total Environment, 2012, 441, 277-289.	3.9	85

#	Article	IF	CITATIONS
127	Photodegradation of phenanthrene on cation-modified clays under visible light. Applied Catalysis B: Environmental, 2012, 123-124, 43-51.	10.8	85
128	Ti3+-self doped brookite TiO2 single-crystalline nanosheets with high solar absorption and excellent photocatalytic CO2 reduction. Scientific Reports, 2016, 6, 23684.	1.6	85
129	Pharmaceuticals and pesticides in secondary effluent wastewater: Identification and enhanced removal by acid-activated ferrate(VI). Water Research, 2019, 148, 272-280.	5.3	85
130	Peracetic Acid–Ruthenium(III) Oxidation Process for the Degradation of Micropollutants in Water. Environmental Science & Technology, 2021, 55, 9150-9160.	4.6	85
131	Ferrate(VI) oxidation of glycine and glycylglycine: Kinetics and products. Water Research, 2010, 44, 927-935.	5.3	84
132	Zero-Valent Iron Nanoparticles Reduce Arsenites and Arsenates to As(0) Firmly Embedded in Core–Shell Superstructure: Challenging Strategy of Arsenic Treatment under Anoxic Conditions. ACS Sustainable Chemistry and Engineering, 2017, 5, 3027-3038.	3.2	84
133	TiO2-supported Ag nanoclusters with enhanced visible light activity for the photocatalytic removal of NO. Applied Catalysis B: Environmental, 2018, 234, 206-212.	10.8	84
134	Effect of Metal Ions on Oxidation of Micropollutants by Ferrate(VI): Enhancing Role of Fe ^{IV} Species. Environmental Science & Technology, 2021, 55, 623-633.	4.6	84
135	Humic acid as promising organic anodes for lithium/sodium ion batteries. Chemical Communications, 2015, 51, 14708-14711.	2.2	83
136	Regulation of Cell Uptake and Cytotoxicity by Nanoparticle Core under the Controlled Shape, Size, and Surface Chemistries. ACS Nano, 2020, 14, 289-302.	7.3	83
137	Elimination of Sludge Odor by Oxidizing Sulfur-Containing Compounds with Ferrate(VI). Environmental Science & Technology, 2009, 43, 5890-5895.	4.6	82
138	Remarkable efficiency of phosphate removal: Ferrate(VI)-induced in situ sorption on core-shell nanoparticles. Water Research, 2016, 103, 83-91.	5.3	82
139	Insight into the role of Ti3+ in photocatalytic performance of shuriken-shaped BiVO4/TiO2â^'x heterojunction. Applied Catalysis B: Environmental, 2017, 203, 526-532.	10.8	82
140	Metal Organic Frameworks (MOFs) as Photocatalysts for the Degradation of Agricultural Pollutants in Water. ACS ES&T Engineering, 2021, 1, 804-826.	3.7	82
141	Novel Ag decorated, BiOCl surface doped AgVO3 nanobelt ternary composite with Z-scheme homojunction-heterojunction interface for high prolific photo switching, quantum efficiency and hole mediated photocatalysis. Applied Catalysis B: Environmental, 2021, 293, 120224.	10.8	82
142	Ferrate(VI) oxidation of polychlorinated diphenyl sulfides: Kinetics, degradation, and oxidized products. Water Research, 2018, 143, 1-9.	5.3	81
143	Assessment of toxicity of selenium and cadmium selenium quantum dots: A review. Chemosphere, 2017, 188, 403-413.	4.2	80
144	Biomass derived hierarchically porous and heteroatom-doped carbons for supercapacitors. Journal of Colloid and Interface Science, 2018, 509, 369-383.	5.0	80

#	Article	IF	CITATIONS
145	Prussian blue/TiO ₂ nanocomposites as a heterogeneous photo-Fenton catalyst for degradation of organic pollutants in water. Catalysis Science and Technology, 2015, 5, 504-514.	2.1	79
146	One-pot synthesis of novel ternary Fe3N/Fe2O3/C3N4 photocatalyst for efficient removal of rhodamine B and CO2 reduction. Journal of Alloys and Compounds, 2021, 852, 156955.	2.8	79
147	Enhanced electrocatalytic performance for methanol oxidation on Pt–TiO2/ITO electrode under UV illumination. International Journal of Hydrogen Energy, 2010, 35, 13290-13297.	3.8	78
148	Iron(VI) and Iron(V) Oxidation of Copper(I) Cyanide. Environmental Science & Technology, 2005, 39, 3849-3854.	4.6	77
149	Impact of metal ions, metal oxides, and nanoparticles on the formation of disinfection byproducts during chlorination. Chemical Engineering Journal, 2017, 317, 777-792.	6.6	75
150	Electronic modulation of iron-bearing heterogeneous catalysts to accelerate Fe(III)/Fe(II) redox cycle for highly efficient Fenton-like catalysis. Applied Catalysis B: Environmental, 2020, 276, 119016.	10.8	75
151	Boosting thermo-photocatalytic CO2 conversion activity by using photosynthesis-inspired electron-proton-transfer mediators. Nature Communications, 2021, 12, 123.	5.8	75
152	Reactivity of ferrate(V) with carboxylic acids: A pre-mix pulse radiolysis study. Radiation Physics and Chemistry, 1994, 44, 479-484.	1.4	74
153	Defective graphitic carbon nitride synthesized by controllable co-polymerization with enhanced visible light photocatalytic hydrogen evolution. Catalysis Science and Technology, 2017, 7, 452-458.	2.1	74
154	Ferrate(VI) Oxidation of Thiourea. Environmental Science & Technology, 1999, 33, 2645-2650.	4.6	73
155	Iron(VI) and Iron(V) Oxidation of Thiocyanate. Environmental Science & Technology, 2002, 36, 4182-4186.	4.6	73
156	Review of kinetics of chemical and photocatalytical oxidation of Arsenic(III) as influenced by pH. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 42, 997-1004.	0.9	73
157	Phase-dependent enhancement for CO ₂ photocatalytic reduction over CeO ₂ /TiO ₂ catalysts. Catalysis Science and Technology, 2016, 6, 7967-7975.	2.1	73
158	Engineering aspects of ferrate in water and wastewater treatment – a review. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 1603-1614.	0.9	72
159	Ferrate(VI) oxidation of ibuprofen: A kinetic study. Environmental Chemistry Letters, 2006, 3, 182-185.	8.3	71
160	Ferrate(VI) Oxidation of Weak-Acid Dissociable Cyanides. Environmental Science & Technology, 2008, 42, 3005-3010.	4.6	71
161	Mechanisms and Efficiency of the Simultaneous Removal of Metals and Cyanides by Using Ferrate(VI): Crucial Roles of Nanocrystalline Iron(III) Oxyhydroxides and Metal Carbonates. Chemistry - A European Journal, 2011, 17, 10097-10105.	1.7	71
162	Kinetics and Mechanism of Oxidation of Tryptophan by Ferrate(VI). Environmental Science & amp; Technology, 2013, 47, 4572-4580.	4.6	70

#	Article	IF	CITATIONS
163	A critical review on plasma-catalytic removal of VOCs: Catalyst development, process parameters and synergetic reaction mechanism. Science of the Total Environment, 2022, 828, 154290.	3.9	70
164	Recent optimization and panelizing measures for green energy projects; insights into CO2 emission influencing to circular economy. Fuel, 2022, 314, 123094.	3.4	69
165	Kinetics of the oxidation of sucralose and related carbohydrates by ferrate(VI). Chemosphere, 2012, 87, 644-648.	4.2	68
166	Ferrate(VI) as a greener oxidant: Electrochemical generation and treatment of phenol. Journal of Hazardous Materials, 2016, 319, 130-136.	6.5	68
167	Br-doping of g-C3N4 towards enhanced photocatalytic performance in Cr(VI) reduction. Chinese Journal of Catalysis, 2020, 41, 1498-1510.	6.9	68
168	Oxidation of copper(I) in seawater. Environmental Science & amp; Technology, 1988, 22, 768-771.	4.6	67
169	Ferrate(VI): Green chemistry oxidant for degradation of cationic surfactant. Chemosphere, 2006, 63, 1785-1790.	4.2	66
170	Ferrate(VI) and ferrate(V) oxidation of cyanide, thiocyanate, and copper(I) cyanide. Radiation Physics and Chemistry, 2008, 77, 761-767.	1.4	66
171	Nonenzymatic uric acid electrochemical sensor based on graphene-modified carbon fiber electrode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 419, 94-99.	2.3	66
172	Enhanced photocatalytic NO removal and toxic NO2 production inhibition over ZIF-8-derived ZnO nanoparticles with controllable amount of oxygen vacancies. Chinese Journal of Catalysis, 2021, 42, 175-183.	6.9	66
173	Reactivity of chlorine dioxide with amino acids, peptides, and proteins. Environmental Chemistry Letters, 2012, 10, 255-264.	8.3	65
174	Visible-light-harvesting reduction of CO2 to chemical fuels with plasmonic Ag@AgBr/CNT nanocomposites. Catalysis Today, 2013, 216, 268-275.	2.2	65
175	pH dependence and thermodynamics of Hg(II) adsorption onto chitosan-poly(vinyl alcohol) hydrogel adsorbent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 51-58.	2.3	65
176	Enhanced Formation of Silver Nanoparticles in Ag ⁺ -NOM-Iron(II, III) Systems and Antibacterial Activity Studies. Environmental Science & Technology, 2014, 48, 3228-3235.	4.6	65
177	Sequential One-Electron Reduction of Fe(V) to Fe(III) by Cyanide in Alkaline Medium. Journal of Physical Chemistry B, 2001, 105, 11529-11532.	1.2	64
178	Oxidation of $\hat{1}^2$ -lactam antibiotics by ferrate(VI). Chemical Engineering Journal, 2013, 221, 446-451.	6.6	64
179	Transformation of polycyclic aromatic hydrocarbons (PAHs) on Fe(III)-modified clay minerals: Role of molecular chemistry and clay surface properties. Applied Catalysis B: Environmental, 2014, 154-155, 238-245.	10.8	64
180	1D nanofiber composites of perylene diimides for visible-light-driven hydrogen evolution from water. RSC Advances, 2014, 4, 48486-48491.	1.7	64

#	Article	IF	CITATIONS
181	Elimination of antibiotic resistance genes and control of horizontal transfer risk by UV-based treatment of drinking water: A mini review. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	3.3	64
182	Interaction of benzo[a]pyrene with Cu(II)-montmorillonite: Generation and toxicity of environmentally persistent free radicals and reactive oxygen species. Environment International, 2019, 129, 154-163.	4.8	64
183	Ferrate(VI) oxidation of zinc–cyanide complex. Chemosphere, 2007, 69, 729-735.	4.2	63
184	Green synthesis of shape-defined anatase TiO2 nanocrystals wholly exposed with {001} and {100} facets. Chemical Communications, 2012, 48, 11736.	2.2	63
185	Active Site-Directed Tandem Catalysis on Single Platinum Nanoparticles for Efficient and Stable Oxidation of Formaldehyde at Room Temperature. Environmental Science & Technology, 2019, 53, 3610-3619.	4.6	63
186	Facile synthesis of Mo-doped TiO2 for selective photocatalytic CO2 reduction to methane: Promoted H2O dissociation by Mo doping. Journal of CO2 Utilization, 2020, 38, 1-9.	3.3	63
187	Thermal coupled photocatalysis over Pt/g-C3N4 for selectively reducing CO2 to CH4 via cooperation of the electronic metal–support interaction effect and the oxidation state of Pt. Applied Catalysis B: Environmental, 2021, 298, 120565.	10.8	63
188	Reactive High-Valent Iron Intermediates in Enhancing Treatment of Water by Ferrate. Environmental Science & Technology, 2022, 56, 30-47.	4.6	63
189	The rate of reduction of copper(II) with hydrogen peroxide in seawater. Marine Chemistry, 1991, 36, 71-83.	0.9	62
190	Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in mosses (Hypnum) Tj ETQq0 0 0 rgBT /Ov	erlock 10 3.9	rf 50 382 Td 62
191	Ferrate(VI) oxidation of endocrine disruptors and antimicrobials in water. Journal of Water Supply: Research and Technology - AQUA, 2008, 57, 419-426.	0.6	62
192	Electrochemical fabrication of long-term stable Pt-loaded PEDOT/graphene composites for ethanol electrooxidation. International Journal of Hydrogen Energy, 2012, 37, 14085-14093.	3.8	62
193	Degradation kinetics and transformation products of chlorophene by aqueous permanganate. Water Research, 2018, 138, 293-300.	5.3	62
194	Novel polyethyleneimine functionalized chitosan–lignin composite sponge with nanowall-network structures for fast and efficient removal of Hg(<scp>ii</scp>) ions from aqueous solution. Environmental Science: Nano, 2020, 7, 793-802.	2.2	61
195	Photolysis of polycyclic aromatic hydrocarbons (PAHs) on Fe3+-montmorillonite surface under visible light: Degradation kinetics, mechanism, and toxicity assessments. Chemosphere, 2017, 184, 1346-1354.	4.2	60
196	Insights into different dimensional MXenes for photocatalysis. Chemical Engineering Journal, 2021, 424, 130340.	6.6	60
197	Enhanced ferrate(VI) oxidation of micropollutants in water by carbonaceous materials: Elucidating surface functionality. Chemical Engineering Journal, 2020, 398, 125607.	6.6	60
198	Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light. Journal of Hazardous Materials, 2015, 287, 16-23.	6.5	59

#	Article	IF	CITATIONS
199	Enhanced photocatalytic H ₂ evolution over CdS/Au/g-C ₃ N ₄ composite photocatalyst under visible-light irradiation. APL Materials, 2015, 3, 104410.	2.2	59
200	Size-dependent maternal-fetal transfer and fetal developmental toxicity of ZnO nanoparticles after oral exposures in pregnant mice. Ecotoxicology and Environmental Safety, 2019, 182, 109439.	2.9	59
201	Potential environmental risks of nanopesticides: Application of Cu(OH)2 nanopesticides to soil mitigates the degradation of neonicotinoid thiacloprid. Environment International, 2019, 129, 42-50.	4.8	59
202	Engineering of reduced graphene oxide on nanosheet–g-C3N4/perylene imide heterojunction for enhanced photocatalytic redox performance. Applied Catalysis B: Environmental, 2019, 250, 42-51.	10.8	58
203	Visible Light-Induced Catalyst-Free Activation of Peroxydisulfate: Pollutant-Dependent Production of Reactive Species. Environmental Science & Technology, 2022, 56, 2626-2636.	4.6	58
204	Amido-functionalized carboxymethyl chitosan/montmorillonite composite for highly efficient and cost-effective mercury removal from aqueous solution. Journal of Colloid and Interface Science, 2019, 554, 479-487.	5.0	57
205	Polarization-enhanced photocatalytic activity in non-centrosymmetric materials based photocatalysis: A review. Chemical Engineering Journal, 2021, 426, 131681.	6.6	57
206	Ferrate(VI) enhanced photocatalytic oxidation of pollutants in aqueous TiO2 suspensions. Environmental Science and Pollution Research, 2010, 17, 453-461.	2.7	55
207	A critical review of selenium analysis in natural water samples. Trends in Environmental Analytical Chemistry, 2015, 5, 1-7.	5.3	55
208	TiO2/g-C3N4 nanosheets hybrid photocatalyst with enhanced photocatalytic activity under visible light irradiation. Research on Chemical Intermediates, 2016, 42, 3609-3624.	1.3	55
209	Carbohydrates-Derived Nitrogen-Doped Hierarchical Porous Carbon for Ultrasensitive Detection of 4-Nitrophenol. ACS Sustainable Chemistry and Engineering, 2018, 6, 17391-17401.	3.2	55
210	The photocatalytic performance and active sites of g-C3N4 effected by the coordination doping of Fe(III). Chinese Journal of Catalysis, 2020, 41, 1564-1572.	6.9	55
211	Sustainable ferrate oxidation: Reaction chemistry, mechanisms and removal of pollutants in wastewater. Environmental Pollution, 2021, 290, 117957.	3.7	55
212	Integrated Photocatalytic Reduction and Oxidation of Perfluorooctanoic Acid by Metal–Organic Frameworks: Key Insights into the Degradation Mechanisms. Journal of the American Chemical Society, 2022, 144, 11840-11850.	6.6	55
213	Ferrate(V) oxidation of pollutants: a premix pulse radiolysis study. Radiation Physics and Chemistry, 2002, 65, 349-355.	1.4	54
214	Efficient photocatalytic dechlorination of chlorophenols over a nonlinear optical material Na ₃ VO ₂ B ₆ O ₁₁ under UV-visible light irradiation. Journal of Materials Chemistry A, 2015, 3, 12179-12187.	5.2	54
215	Graft polymerization and plasma treatment of polymer membranes for fouling reduction: A review. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 1713-1727.	0.9	53
216	Exploring the Origin of High Dechlorination Activity in Polar Materials M ₂ B ₅ O ₉ Cl (M = Ca, Sr, Ba, Pb) with Built-In Electric Field. Chemistry of Materials, 2017, 29, 639-647.	3.2	53

#	Article	IF	CITATIONS
217	Cytotoxic Free Radicals on Air-Borne Soot Particles Generated by Burning Wood or Low-Maturity Coals. Environmental Science & Technology, 2020, 54, 5608-5618.	4.6	53
218	Chitosan-poly(vinyl alcohol)/attapulgite nanocomposites for copper(II) ions removal: pH dependence and adsorption mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 500, 186-194.	2.3	52
219	Phototransformation of halophenolic disinfection byproducts in receiving seawater: Kinetics, products, and toxicity. Water Research, 2019, 150, 68-76.	5.3	52
220	Oxidation of thioacetamide by ferrate(VI). Marine Chemistry, 2000, 70, 235-242.	0.9	51
221	Visible-light-driven photocatalytic H ₂ evolution from aqueous suspensions of perylene diimide dye-sensitized Pt/TiO ₂ catalysts. RSC Advances, 2015, 5, 15880-15885.	1.7	51
222	Ferrate(VI) pre-treatment and subsequent chlorination of blue-green algae: Quantification of disinfection byproducts. Environment International, 2019, 133, 105195.	4.8	51
223	Effect of low-molecular-weight organic acids on photo-degradation of phenanthrene catalyzed by Fe(III)–smectite under visible light. Chemosphere, 2015, 138, 266-271.	4.2	50
224	Efficient photocatalytic degradation of gaseous toluene over F-doped TiO2/exfoliated bentonite. Applied Surface Science, 2020, 530, 147286.	3.1	50
225	Ultrasound and water flow driven piezophototronic effect in self-polarized flexible α-Fe2O3 containing PVDF nanofibers film for enhanced catalytic oxidation. Nano Energy, 2021, 90, 106586.	8.2	50
226	Oxygen Vacancies Promoted Piezoelectricity toward Piezo-Photocatalytic Decomposition of Tetracycline over SrBi ₄ Ti ₄ O ₁₅ . ACS ES&T Engineering, 2022, 2, 1365-1375.	3.7	50
227	Inactivation of Murine Norovirus and Fecal Coliforms by Ferrate(VI) in Secondary Effluent Wastewater. Environmental Science & Technology, 2020, 54, 1878-1888.	4.6	49
228	Octahedral-shaped perovskite CaCu3Ti4O12 with dual defects and coexposed {(001), (111)} facets for visible-light photocatalysis. Applied Catalysis B: Environmental, 2019, 254, 86-97.	10.8	48
229	Visible light-driven novel Bi2Ti2O7/CaTiO3 composite photocatalyst with enhanced photocatalytic activity towards NO removal. Chemosphere, 2021, 275, 130083.	4.2	48
230	High efficient electrocatalytic oxidation of formic acid at Pt dispersed on porous poly(o-methoxyaniline). International Journal of Hydrogen Energy, 2011, 36, 6414-6421.	3.8	47
231	Development of a rapid method for the determination and confirmation of nitroimidazoles in six matrices by fast liquid chromatography–tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2012, 64-65, 40-48.	1.4	47
232	In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles. Nature Communications, 2017, 8, 14462.	5.8	47
233	Kinetics of the oxidation of endocrine disruptor nonylphenol by ferrate(VI). Environmental Chemistry Letters, 2009, 7, 115-119.	8.3	46
234	Photocatalytic degradation of nonionic surfactant, Brij 35 in aqueous TiO2 suspensions. Chemosphere, 2010, 79, 205-209.	4.2	46

#	Article	IF	CITATIONS
235	Adsorption and dechlorination of 2,4-dichlorophenol (2,4-DCP) on a multi-functional organo-smectite templated zero-valent iron composite. Chemical Engineering Journal, 2012, 191, 202-209.	6.6	46
236	Perovskite nanostructures assembled in molten salt based on halogen anions KX (X = F, Cl and Br): Regulated morphology and defect-mediated photocatalytic activity. Applied Catalysis B: Environmental, 2018, 232, 531-543.	10.8	46
237	Classical and alternative disinfection strategies to control the COVID-19 virus in healthcare facilities: a review. Environmental Chemistry Letters, 2021, 19, 1945-1951.	8.3	46
238	K4Nb6O17/Fe3N/α-Fe2O3/C3N4 as an enhanced visible light-driven quaternary photocatalyst for acetamiprid photodegradation, CO2 reduction, and cancer cells treatment. Applied Surface Science, 2021, 544, 148939.	3.1	46
239	PtI /[(CH3)2NH2]3[Bil6] as a well-dispersed photocatalyst for hydrogen production in hydroiodic acid. Nano Energy, 2018, 50, 665-674.	8.2	45
240	Ultrathin Co0.85Se nanosheet cocatalyst for visible-light CO2 photoreduction. Catalysis Today, 2019, 335, 208-213.	2.2	45
241	Degradation of Organic Contaminants by Reactive Iron/Manganese Species: Progress and Challenges. Water Research, 2022, 221, 118765.	5.3	45
242	Heterogeneous Photocatalytic Reduction of Ferrate(VI) in UV-Irradiated Titania Suspensions. Langmuir, 2001, 17, 4598-4601.	1.6	44
243	Defect-mediated of Cu@TiO2 core–shell nanoparticles with oxygen vacancies for photocatalytic degradation 2,4-DCP under visible light irradiation. Applied Surface Science, 2015, 358, 479-484.	3.1	44
244	Efficient removal of methyl orange using Cu2O as a dual function catalyst. Applied Surface Science, 2018, 444, 559-568.	3.1	44
245	Metal-organic frameworks for environmental applications. Cell Reports Physical Science, 2021, 2, 100348.	2.8	44
246	Confocal Laser Raman Microspectroscopy of Biomineralization Foci in UMR 106 Osteoblastic Cultures Reveals Temporally Synchronized Protein Changes Preceding and Accompanying Mineral Crystal Deposition. Journal of Biological Chemistry, 2009, 284, 7100-7113.	1.6	43
247	Kinetics and mechanism of formation and destruction of N-nitrosodimethylamine in water – A review. Separation and Purification Technology, 2012, 88, 1-10.	3.9	43
248	Formation and Evolution of Solvent-Extracted and Nonextractable Environmentally Persistent Free Radicals in Fly Ash of Municipal Solid Waste Incinerators. Environmental Science & Technology, 2019, 53, 10120-10130.	4.6	43
249	Efficient removal of mercury ions with MoS2-nanosheet-decorated PVDF composite adsorption membrane. Environmental Pollution, 2021, 268, 115705.	3.7	43
250	Quantitative determination of corticosteroids in bovine milk using mixed-mode polymeric strong cation exchange solid-phase extraction and liquid chromatography–tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2010, 53, 919-928.	1.4	42
251	Impact of inorganic ions and natural organic matter on arsenates removal by ferrate(VI): Understanding a complex effect of phosphates ions. Water Research, 2018, 141, 357-365.	5.3	42
252	Visible light and fulvic acid assisted generation of Mn(III) to oxidize bisphenol A: The effect of tetrabromobisphenol A. Water Research, 2020, 169, 115273.	5.3	42

#	Article	IF	CITATIONS
253	Freestanding MoO ₂ /Mo ₂ C imbedded carbon fibers for Li-ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 2908-2914.	1.3	41
254	Latest progress in g-C ₃ N ₄ based heterojunctions for hydrogen production via photocatalytic water splitting: a mini review. JPhys Energy, 2020, 2, 042003.	2.3	41
255	The oxidation of Cu(I) with H2O2 in natural waters. Geochimica Et Cosmochimica Acta, 1989, 53, 2269-2276.	1.6	40
256	Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate(VI)/(III) composite. Journal of Hazardous Materials, 2012, 211-212, 126-130.	6.5	40
257	Comparative studies on montmorillonite-supported zero-valent iron nanoparticles produced by different methods: reactivity and stability. Environmental Technology (United Kingdom), 2013, 34, 25-33.	1.2	40
258	Facile fabrication, characterization of Pt–Ru nanoparticles modified reduced graphene oxide and its high electrocatalytic activity for methanol electro-oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 57-61.	2.3	40
259	Oxidation of caffeine by acidâ€activated ferrate(VI): Effect of ions and natural organic matter. AICHE Journal, 2017, 63, 4998-5006.	1.8	40
260	Mesoporous silicate/carbon composites derived from dye-loaded palygorskite clay waste for efficient removal of organic contaminants. Science of the Total Environment, 2019, 696, 133955.	3.9	40
261	Revelation of ferrate(VI) unimolecular decay under alkaline conditions: Investigation of involvement of Fe(IV) and Fe(V) species. Chemical Engineering Journal, 2020, 388, 124134.	6.6	40
262	Photocatalytic removal of NO by intercalated carbon nitride: The effect of group IIA element ions. Applied Catalysis B: Environmental, 2020, 273, 119007.	10.8	40
263	Effect of ionic interactions on the rates of reduction of Cu(II) with H2O2 in aqueous solutions. Journal of Solution Chemistry, 1992, 21, 1271-1287.	0.6	39
264	High-valent iron-based oxidants to treat perfluorooctanesulfonate and perfluorooctanoic acid in water. Environmental Chemistry Letters, 2014, 12, 413-417.	8.3	39
265	Removal of sulfachloropyridazine by ferrate(VI): Kinetics, reaction pathways, biodegradation, and toxicity evaluation. Chemical Engineering Journal, 2019, 372, 742-751.	6.6	39
266	Plasmonic Hot Electrons from Oxygen Vacancies for Infrared Lightâ€Driven Catalytic CO ₂ Reduction on Bi ₂ O _{3â^'<i>x</i>} . Angewandte Chemie, 2021, 133, 923-929.	1.6	39
267	Single-Atom Pd–N3 Sites on Carbon-Deficient g-C3N4 for Photocatalytic H2 Evolution. Transactions of Tianjin University, 2021, 27, 139-146.	3.3	39
268	Effect of deposition potential on the structure and electrocatalytic behavior of Pt micro/nanoparticles. International Journal of Hydrogen Energy, 2011, 36, 15052-15059.	3.8	38
269	Dendritic Ag@Pt core–shell catalyst modified with reduced graphene oxide and titanium dioxide: Fabrication, characterization, and its photo-electrocatalytic performance. International Journal of Hydrogen Energy, 2014, 39, 5764-5771.	3.8	38
270	Insights into the physicochemical characteristics from vermiculite to silica nanosheets. Applied Clay Science, 2016, 132-133, 17-23.	2.6	38

#	Article	IF	CITATIONS
271	Efficient microwave degradation of humic acids in water using persulfate and activated carbon. Environmental Chemistry Letters, 2018, 16, 1069-1075.	8.3	38
272	Electrochemical synthesis of ferrate(VI) using sponge iron anode and oxidative transformations of antibiotic and pesticide. Journal of Hazardous Materials, 2018, 344, 1155-1164.	6.5	38
273	Synergistic effect of Cu-ion and WO 3 nanofibers on the enhanced photocatalytic degradation of Rhodamine B and aniline solution. Applied Surface Science, 2018, 451, 306-314.	3.1	38
274	Enhanced removal of Cr(III) in high salt organic wastewater by EDTA modified magnetic mesoporous silica. Microporous and Mesoporous Materials, 2020, 303, 110262.	2.2	38
275	Ferrate(VI) Oxidation of Pharmaceuticals in Hydrolyzed Urine: Enhancement by Creatinine and the Role of Fe(IV). ACS ES&T Water, 2021, 1, 969-979.	2.3	38
276	Groundwater contamination with the threat of COVID-19: Insights into CSR theory of Carroll's pyramid. Journal of King Saud University - Science, 2021, 33, 101295.	1.6	38
277	The oxidation of Cu(I) in electrolyte solutions. Journal of Solution Chemistry, 1988, 17, 581-599.	0.6	37
278	Formation of iron(VI) in ozonalysis of iron(III) in alkaline solution. Inorganica Chimica Acta, 2007, 360, 2789-2791.	1.2	37
279	Oxidative degradation of triazine- and sulfonylurea-based herbicides using Fe(VI): The case study of atrazine and iodosulfuron with kinetics and degradation products. Separation and Purification Technology, 2015, 156, 1041-1046.	3.9	37
280	Enhanced Lithium Ion Storage Performance of Tannic Acid in LiTFSI Electrolyte. ACS Omega, 2017, 2, 1273-1278.	1.6	37
281	Thermal- and photo-induced degradation of perfluorinated carboxylic acids: Kinetics and mechanism. Water Research, 2017, 126, 12-18.	5.3	37
282	Photocatalytic oxidation of cyanide in aqueous titanium dioxide suspensions: Effect of ethylenediaminetetraacetate. Solar Energy, 2008, 82, 1031-1036.	2.9	36
283	Organic matter source discrimination by humic acid characterization: Synchronous scan fluorescence spectroscopy and Ferrate(VI). Chemosphere, 2013, 90, 2013-2019.	4.2	36
284	Oxidation of artificial sweetener sucralose by advanced oxidation processes: a review. Environmental Science and Pollution Research, 2014, 21, 8525-8533.	2.7	36
285	Selective Adsorption of Pb(II) from Aqueous Solution by Triethylenetetramine-Grafted Polyacrylamide/Vermiculite. Materials, 2018, 11, 514.	1.3	36
286	Constructing a Z-Scheme Heterojunction Photocatalyst of GaPO ₄ /î±-MoC/Ga ₂ O ₃ without Mingling Type-II Heterojunction for CO ₂ Reduction to CO. ACS Applied Materials & Interfaces, 2021, 13, 33034-33044.	4.0	36
287	Electrochemical formation of ferrate(VI) in a molten NaOH–KOH system. Electrochemistry Communications, 2006, 8, 1737-1740.	2.3	35
288	Oxidation of benzothiophene, dibenzothiophene, and methyl-dibenzothiophene by ferrate(VI). Journal of Hazardous Materials, 2014, 279, 296-301.	6.5	35

#	Article	IF	CITATIONS
289	Synthesis of a three-dimensional network sodium alginate–poly(acrylic acid)/attapulgite hydrogel with good mechanic property and reusability for efficient adsorption of Cu2+ and Pb2+. Environmental Chemistry Letters, 2018, 16, 653-658.	8.3	35
290	Photocatalytic toluene degradation over Bi-decorated TiO2: Promoted O2 supply to catalyst's surface by metallic Bi. Catalysis Today, 2019, 335, 372-380.	2.2	35
291	Enhanced removal of chromium(III) for aqueous solution by EDTA modified attapulgite: Adsorption performance and mechanism. Science of the Total Environment, 2020, 720, 137391.	3.9	35
292	Perylene Imide-Based Optical Chemosensors for Vapor Detection. Chemosensors, 2021, 9, 1.	1.8	35
293	Metals in Sediments of the Upper Laguna Madre. Marine Pollution Bulletin, 1999, 38, 1221-1226.	2.3	34
294	Chloramines in a pilot-scale water distribution system: Transformation of 17β-estradiol and formation of disinfection byproducts. Water Research, 2016, 106, 41-50.	5.3	34
295	Atomic Layer Deposition of Mixed-Layered Aurivillius Phase on TiO2 Nanotubes: Synthesis, Characterization and Photoelectrocatalytic Properties. Nanomaterials, 2020, 10, 2183.	1.9	34
296	Mechanistic Investigation of Enhanced Photoreactivity of Dissolved Organic Matter after Chlorination. Environmental Science & Chlorination, Environmental Science & Chlorination, 2021, 55, 8937-8946.	4.6	34
297	State-of-the-art and prospects of Zn-containing layered double hydroxides (Zn-LDH)-based materials for photocatalytic water remediation. Chemosphere, 2021, 278, 130367.	4.2	34
298	Major and trace elements in sediments of the Campeche Sound, southeast Gulf of Mexico. Marine Pollution Bulletin, 2004, 48, 87-90.	2.3	33
299	Effect of pH on the formation of disinfection byproducts in ferrate(VI) pre-oxidation and subsequent chlorination. Separation and Purification Technology, 2015, 156, 980-986.	3.9	33
300	Magnetic chitosan-functionalized Fe3O4@Au nanoparticles: Synthesis and characterization. Journal of Alloys and Compounds, 2016, 684, 68-74.	2.8	33
301	Ferrate(VI) pretreatment before disinfection: An effective approach to controlling unsaturated and aromatic halo-disinfection byproducts in chlorinated and chloraminated drinking waters. Environment International, 2020, 138, 105641.	4.8	33
302	Recyclable 0D/2D ZnFe2O4/Bi5FeTi3O15ÂS-scheme heterojunction with bismuth decoration for enhanced visible-light-driven tetracycline photodegradation. Ceramics International, 2021, 47, 17109-17119.	2.3	33
303	A coupling process of membrane separation and heterogeneous Fenton-like catalytic oxidation for treatment of acid orange II-containing wastewater. Separation and Purification Technology, 2011, 80, 45-51.	3.9	32
304	Visible light photodegradation of phenanthrene catalyzed by Fe(III)-smectite: Role of soil organic matter. Journal of Hazardous Materials, 2013, 256-257, 16-23.	6.5	32
305	Electro-oxidation of the dye azure B: kinetics, mechanism, and by-products. Environmental Science and Pollution Research, 2014, 21, 8379-8386.	2.7	32
306	Layered Perovskite Pb ₂ Bi ₄ Ti ₅ O ₁₈ for Excellent Visible Light-Driven Photocatalytic NO Removal. Industrial & Engineering Chemistry Research, 2017, 56, 2908-2916.	1.8	32

#	Article	IF	CITATIONS
307	Hierarchical TiO ₂ nanowire/microflower photoanode modified with Au nanoparticles for efficient photoelectrochemical water splitting. Catalysis Science and Technology, 2018, 8, 1395-1403.	2.1	32
308	CaCu3Ti4O12, an efficient catalyst for ibuprofen removal by activation of peroxymonosulfate under visible-light irradiation. Environmental Chemistry Letters, 2019, 17, 481-486.	8.3	32
309	Light-driven thermocatalytic CO ₂ reduction over surface-passivated β-Mo ₂ C nanowires: enhanced catalytic stability by light. Chemical Communications, 2019, 55, 4651-4654.	2.2	32
310	Current understanding of the surface contamination and contact transmission of SARS-CoV-2 in healthcare settings. Environmental Chemistry Letters, 2021, 19, 1935-1944.	8.3	32
311	Metal-Free Phosphorus-Doped ZnIn ₂ S ₄ Nanosheets for Enhanced Photocatalytic CO ₂ Reduction. Journal of Physical Chemistry C, 2021, 125, 23813-23820.	1.5	32
312	Determination of tetracyclines in pig and other meat samples using liquid chromatography coupled with diode array and tandem mass spectrometric detectors. Meat Science, 2014, 96, 1332-1339.	2.7	31
313	Atomic Scale Imaging of Nucleation and Growth Trajectories of an Interfacial Bismuth Nanodroplet. ACS Nano, 2016, 10, 2386-2391.	7.3	31
314	Voids padding induced further enhancement in photocatalytic performance of porous graphene-like carbon nitride. Journal of Hazardous Materials, 2017, 335, 66-74.	6.5	31
315	Nanostructured 3D-porous graphene hydrogel based Ti/Sb–SnO2–Gr electrode with enhanced electrocatalytic activity. Chemosphere, 2017, 169, 651-659.	4.2	31
316	Efficient Removal of Pb(II) from Aqueous Solution by Modified Montmorillonite/Carbon Composite: Equilibrium, Kinetics, and Thermodynamics. Journal of Chemical & Engineering Data, 2017, 62, 333-340.	1.0	31
317	Copper, silver, and titania nanoparticles do not release ions under anoxic conditions and release only minute ion levels under oxic conditions in water: Evidence for the low toxicity of nanoparticles. Environmental Chemistry Letters, 2020, 18, 1319-1328.	8.3	31
318	Quantification of corticosteroids in bovine urine using selective solid phase extraction and reversed-phase liquid chromatography/tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 1471-1479.	1.2	30
319	Electrocatalytic activity of Pd nanoparticles supported on poly(3,4-ethylenedioxythiophene)-graphene hybrid for ethanol electrooxidation. Journal of Solid State Electrochemistry, 2013, 17, 1039-1047.	1.2	30
320	A two-step synthesis of NaTaO3 microspheres for photocatalytic water splitting. International Journal of Hydrogen Energy, 2014, 39, 13481-13485.	3.8	30
321	Direct evidence of Fe(<scp>v</scp>) and Fe(<scp>iv</scp>) intermediates during reduction of Fe(<scp>vi</scp>) to Fe(<scp>iii</scp>): a nuclear forward scattering of synchrotron radiation approach. Physical Chemistry Chemical Physics, 2015, 17, 21787-21790.	1.3	30
322	Controlled fabrication of hierarchically porous Ti/Sb–SnO2anode from honeycomb to network structure with high electrocatalytic activity. RSC Advances, 2015, 5, 28803-28813.	1.7	30
323	Iron(V)/Iron(IV) species in graphitic carbon nitride-ferrate(VI)-visible light system: Enhanced oxidation of micropollutants. Chemical Engineering Journal, 2022, 428, 132610.	6.6	30
324	Enhanced Degradation of Micropollutants in a Peracetic Acid–Fe(III) System with Picolinic Acid. Environmental Science & Technology, 2022, 56, 4437-4446.	4.6	30

#	Article	IF	CITATIONS
325	Equilibrium constants for the formation of Cu(I) halide complexes. Journal of Solution Chemistry, 1990, 19, 375-390.	0.6	29
326	Enhanced electrocatalytic performance for isopropanol oxidation on Pd–Au nanoparticles dispersed on poly(p-phenylene) prepared from biphenyl. Materials Chemistry and Physics, 2010, 123, 390-395.	2.0	29
327	Depollution of indigo dye by anodic oxidation and electro-Fenton using B-doped diamond anode. Environmental Chemistry Letters, 2014, 12, 219-224.	8.3	29
328	From environmental pollutant to activated carbons for high-performance supercapacitors. Electrochimica Acta, 2016, 201, 96-105.	2.6	29
329	Oxidation of octylphenol by ferrate(VI). Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2009, 44, 62-66.	0.9	28
330	Photoinduced Topotactic Growth of Bismuth Nanoparticles from Bulk SrBi ₂ Ta ₂ O ₉ . Chemistry of Materials, 2013, 25, 2045-2050.	3.2	28
331	Visible-light-driven Ag/AgCl@In ₂ O ₃ : a ternary photocatalyst for the degradation of tetracycline antibiotics. Catalysis Science and Technology, 2020, 10, 8230-8239.	2.1	28
332	Revelation of Fe(V)/Fe(IV) Involvement in the Fe(VI)–ABTS System: Kinetic Modeling and Product Analysis. Environmental Science & Technology, 2021, 55, 3976-3987.	4.6	28
333	Metals in Fish and Shrimp of the Campeche Sound, Gulf of Mexico. Bulletin of Environmental Contamination and Toxicology, 2001, 67, 756-762.	1.3	27
334	Simultaneous determination of eight corticosteroids in bovine tissues using liquid chromatography–tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 906, 75-84.	1.2	27
335	Ferrates(FeVI, FeV, and FeIV) oxidation of iodide: Formation of triiodide. Chemosphere, 2016, 144, 1156-1161.	4.2	27
336	K3MB5O10 (M = Zn and Cd) with d10 configuration: Efficient and reusable catalysts for dehalogenation of halophenols. Applied Catalysis B: Environmental, 2017, 206, 599-607.	10.8	27
337	Fate and risk of metal sulfide nanoparticles in the environment. Environmental Chemistry Letters, 2020, 18, 97-111.	8.3	27
338	Interaction of Ag+ with soil organic matter: Elucidating the formation of silver nanoparticles. Chemosphere, 2020, 243, 125413.	4.2	27
339	Strain-Driven Polarized Electric Field-Promoted Photocatalytic Activity in Borate-Based CsCdBO ₃ Bulk Materials. ACS Applied Materials & Interfaces, 2021, 13, 34202-34212.	4.0	27
340	Activation of Peroxymonosulfate by Phosphate and Carbonate for the Abatement of Atrazine: Roles of Radical and Nonradical Species. ACS ES&T Water, 2022, 2, 635-643.	2.3	27
341	Mössbauer Characterization and in Situ Monitoring of Thermal Decomposition of Potassium Ferrate(VI), K2FeO4in Static Air Conditions. Journal of Physical Chemistry B, 2007, 111, 4280-4286.	1.2	26
342	Development and validation of a method for determination of corticosteroids in pig fat using liquid chromatography–tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 403-410.	1.2	26

#	Article	IF	CITATIONS
343	Determination of ng/mL Levetiracetam using Ultra-High-Performance Liquid Chromatography-Photodiode Absorbance. Journal of Chromatographic Science, 2012, 50, 253-258.	0.7	26
344	TiO2 supported on silica nanolayers derived from vermiculite for efficient photocatalysis. Catalysis Today, 2013, 216, 95-103.	2.2	26
345	Impact of inorganic buffering ions on the stability of Fe(<scp>vi</scp>) in aqueous solution: role of the carbonate ion. Physical Chemistry Chemical Physics, 2016, 18, 4415-4422.	1.3	26
346	Colored TiO2 composites embedded on fabrics as photocatalysts: Decontamination of formaldehyde and deactivation of bacteria in water and air. Chemical Engineering Journal, 2019, 375, 121949.	6.6	26
347	Fenton reaction induced in-situ redox and re-complexation of polyphenol-Cr complex and their products. Chemosphere, 2020, 250, 126214.	4.2	26
348	Boron- and phosphorous-doped graphene nanosheets and quantum dots as sensors and catalysts in environmental applications: a review. Environmental Chemistry Letters, 2021, 19, 4375-4392.	8.3	26
349	Ferrate(V) oxidation of thiourea: a premix pulse radiolysis study. Inorganica Chimica Acta, 2000, 311, 40-44.	1.2	25
350	The influence of electrolyte composition on electrochemical ferrate(VI) synthesis. Part I: anodic dissolution kinetics of pure iron. Journal of Applied Electrochemistry, 2010, 40, 1019-1028.	1.5	25
351	High-valent iron (FeVI, FeV, and FeIV) species in water: characterization and oxidative transformation of estrogenic hormones. Physical Chemistry Chemical Physics, 2016, 18, 18802-18810.	1.3	25
352	Preparation of Cu/GO/Ti electrode by electrodeposition and its enhanced electrochemical reduction for aqueous nitrate. Journal of Environmental Management, 2020, 276, 111357.	3.8	25
353	Oxidation of antibiotics by ferrate(VI) in water: Evaluation of their removal efficiency and toxicity changes. Chemosphere, 2021, 277, 130365.	4.2	25
354	Mesoporous graphitic carbon nitride and carbon–TiO 2 hybrid composite photocatalysts with enhanced photocatalytic activity under visible light irradiation. Journal of Environmental Chemical Engineering, 2016, 4, 797-807.	3.3	24
355	Degradation of chloramphenicol by chlorine and chlorine dioxide in a pilot-scale water distribution system. Separation and Purification Technology, 2019, 211, 564-570.	3.9	24
356	A subtle review on the challenges of photocatalytic fuel cell for sustainable power production. International Journal of Hydrogen Energy, 2021, 46, 22877-22906.	3.8	24
357	Synthesis of CaFe2O4-NGO Nanocomposite for Effective Removal of Heavy Metal Ion and Photocatalytic Degradation of Organic Pollutants. Nanomaterials, 2021, 11, 1471.	1.9	24
358	Heavy Metals in a Coastal Lagoon of the Gulf of Mexico. Marine Pollution Bulletin, 1999, 38, 479-485.	2.3	23
359	Transformation of Solid Potassium Ferrate(VI) (K ₂ FeO ₄): Mechanism and Kinetic Effect of Air Humidity. European Journal of Inorganic Chemistry, 2009, 2009, 1060-1067.	1.0	23
360	Reduction of Oxyiron(V) by Sulfite and Thiosulfate in Aqueous Solution. Journal of Physical Chemistry A, 2009, 113, 8901-8906.	1.1	23

#	Article	IF	CITATIONS
361	A new reactor coupling heterogeneous Fentonâ€like catalytic oxidation with membrane separation for degradation of organic pollutants. Journal of Chemical Technology and Biotechnology, 2011, 86, 1488-1494.	1.6	23
362	Attachment of cerium oxide nanoparticles of different surface charges to kaolinite: Molecular and atomic mechanisms. Environmental Research, 2019, 177, 108645.	3.7	23
363	Removal of Mercury Ions from Aqueous Solutions by Crosslinked Chitosanâ€based Adsorbents: A Mini Review. Chemical Record, 2020, 20, 1220-1234.	2.9	23
364	Enhancement of photocatalytic NO removal activity of g-C ₃ N ₄ by modification with illite particles. Environmental Science: Nano, 2020, 7, 1990-1998.	2.2	23
365	Effect of ionic interactions on the rates of oxidation of Cu(I) with O2 in natural waters. Marine Chemistry, 1988, 25, 141-161.	0.9	22
366	Kinetics of the reaction of aqueous iron(vi) (FeVIO42â^') with ethylenediaminetetraacetic acid. Dalton Transactions, 2008, , 1883.	1.6	22
367	UV light induces Ag nanoparticle formation: roles of natural organic matter, iron, and oxygen. Environmental Chemistry Letters, 2016, 14, 353-357.	8.3	22
368	Facile synthesis of carbon-Bi2WO6 with enhanced visible-light photocatalytic activities. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	22
369	Low-temperature co-pyrolysis behaviours and kinetics of oily sludge: effect of agricultural biomass. Environmental Technology (United Kingdom), 2017, 38, 361-369.	1.2	22
370	Rapid removal of acesulfame potassium by acid-activated ferrate(VI) under mild alkaline conditions. Chemosphere, 2019, 230, 416-423.	4.2	22
371	Constructing FeCoSe2/Co0.85Se heterostructure catalysts for efficient oxygen evolution. Journal of Alloys and Compounds, 2020, 825, 154073.	2.8	22
372	Degradation of PFOS and PFOA in soil and groundwater samples by high dose Electron Beam Technology. Radiation Physics and Chemistry, 2021, 189, 109705.	1.4	22
373	COVID-19 epidemiologic surveillance using wastewater. Environmental Chemistry Letters, 2021, 19, 1911-1915.	8.3	22
374	Concentrations of elements and metals in sediments of the southeastern Gulf of Mexico. Environmental Geology, 2002, 42, 41-46.	1.2	21
375	Thermal decomposition of iron(VI) oxides, K2FeO4 and BaFeO4, in an inert atmosphere. Journal of Solid State Chemistry, 2006, 179, 1426-1433.	1.4	21
376	The cyclic voltammetric study of ferrate(VI) formation in a molten Na/K hydroxide mixture. Electrochimica Acta, 2008, 54, 203-208.	2.6	21
377	Reduction of ferrate(VI) and oxidation of cyanate in a Fe(VI)–TiO2–UV–NCOâ^' system. Chemosphere, 2008, 72, 1694-1699.	4.2	21
378	Kinetics and Mechanism of Ru(III)-Catalyzed Oxidation of Paracetamol by Chloramine-T in Aqueous Acidic Medium. Catalysis Letters, 2009, 132, 285-291.	1.4	21

#	Article	IF	CITATIONS
379	Facile synthesis of water soluble fluorescent metal (Pt, Au, Ag and Cu) quantum clusters for the selective detection of Fe ³⁺ ions as both fluorescent and colorimetric probes. Journal of Materials Chemistry C, 2017, 5, 2466-2473.	2.7	21
380	Bacterial community structure and microorganism inactivation following water treatment with ferrate(VI) or chlorine. Environmental Chemistry Letters, 2017, 15, 525-530.	8.3	21
381	The effect of ionic interaction on the rates of oxidation in natural waters. Marine Chemistry, 1987, 22, 179-191.	0.9	20
382	Oxidation of thiocyanate by iron(V) in alkaline medium. Inorganica Chimica Acta, 2004, 357, 4587-4591.	1.2	20
383	Heterogeneous photocatalytic reduction of Fe(VI) in UV-irradiated titania suspensions: effect of ammonia. Journal of Applied Electrochemistry, 2005, 35, 775-781.	1.5	20
384	Removal of Cyanide and Zinc–Cyanide Complex by an Ion-Exchange Process. Water, Air, and Soil Pollution, 2008, 194, 179-183.	1.1	20
385	Reduction of selenite by cysteine in ionic media. Geochimica Et Cosmochimica Acta, 2014, 124, 98-108.	1.6	20
386	Hierarchically Porous Carbons Derived from Cotton Stalks for Highâ€Performance Supercapacitors. ChemElectroChem, 2017, 4, 2599-2607.	1.7	20
387	Donor–Acceptor Supramolecular Organic Nanofibers as Visible-Light Photoelectrocatalysts for Hydrogen Production. ACS Applied Materials & Interfaces, 2018, 10, 19764-19772.	4.0	20
388	Amorphous Ti(<scp>iv</scp>)-modified flower-like ZnIn ₂ S ₄ microspheres with enhanced hydrogen evolution photocatalytic activity and simultaneous wastewater purification. Journal of Materials Chemistry C, 2020, 8, 2693-2699.	2.7	20
389	The interaction of Ag2O nanoparticles with Escherichia coli: inhibition–sterilization process. Scientific Reports, 2021, 11, 1703.	1.6	20
390	Dissociation Constants of Protonated Cysteine Species in NaCl Media. Journal of Solution Chemistry, 2002, 31, 783-792.	0.6	19
391	High efficient electrooxidation of formic acid at a novel Pt–indole composite catalyst prepared by electrochemical self-assembly. Journal of Power Sources, 2011, 196, 1118-1122.	4.0	19
392	Fast-Target Analysis and Hourly Variation of 60 Pharmaceuticals in Wastewater Using UPLC-High Resolution Mass Spectrometry. Archives of Environmental Contamination and Toxicology, 2015, 69, 525-534.	2.1	19
393	Fluorescent Au nanoclusters stabilized by silane: facile synthesis, color-tunability and photocatalytic properties. Nanoscale, 2017, 9, 4981-4988.	2.8	19
394	Electrochemical treatment of 2, 4–dichlorophenol using a nanostructured 3D–porous Ti/Sb–SnO2–Gr anode: Reaction kinetics, mechanism, and continuous operation. Chemosphere, 2017, 185, 11-19.	4.2	19
395	Stabilization of Ag–Au Bimetallic Nanocrystals in Aquatic Environments Mediated by Dissolved Organic Matter: A Mechanistic Perspective. Environmental Science & Technology, 2018, 52, 7269-7278.	4.6	19
396	Oxygen vacancy confining effect on photocatalytic efficiency of Pt1-black TiO2 single-atom photocatalysts for hydrogen generation and phenol decomposition. Environmental Chemistry Letters, 2021, 19, 1815-1821.	8.3	19

18

#	Article	IF	CITATIONS
397	Enhanced removal of Cr(III)-EDTA chelates from high-salinity water by ternary complex formation on DETA functionalized magnetic carbon-based adsorbents. Ecotoxicology and Environmental Safety, 2021, 209, 111858.	2.9	19
398	Mechanistic insight of simultaneous removal of tetracycline and its related antibiotic resistance bacteria and genes by ferrate(VI). Science of the Total Environment, 2021, 786, 147492.	3.9	19
399	Mössbauer Investigation of Peroxo Species in the Iron(III)-EDTA-H2O2 System. European Journal of Inorganic Chemistry, 2005, 2005, 4393-4400.	1.0	18
400	Oxidation of Xâ€ray compound ditrizoic acid by ferrate(VI). Environmental Technology (United) Tj ETQq0 0 0 rgBT	Overlock 1.2	2 10 Tf 50 62
401	ANALYSIS OF SULFONAMIDE RESIDUES IN REAL HONEY SAMPLES USING LIQUID CHROMATOGRAPHY WITH FLUORESCENCE AND TANDEM MASS SPECTROMETRY DETECTION. Journal of Liquid Chromatography and Related Technologies, 2013, 36, 1105-1125.	0.5	18
402	Silica induced oxygen vacancies in supported mixed-phase TiO2 for photocatalytic degradation of phenol under visible light irradiation. Catalysis Communications, 2016, 87, 98-101.	1.6	18
403	Determination of Alternaria Toxins in Sunflower Oil by Liquid Chromatography Isotope Dilution Tandem Mass Spectrometry. Molecules, 2020, 25, 1685.	1.7	18

404	Photothermal catalytic CO2 hydrogenation over molybdenum carbides: Crystal structure and photothermocatalytic synergistic effects. Journal of CO2 Utilization, 2021, 49, 101562.	3.3

405	Title is missing!. Water, Air, and Soil Pollution, 2002, 134, 111-127.	1.1	17
	Heterogeneous photocatalytic reduction of ferrate(VI) in UV-irradiated titania suspensions: Role in		

406	2003, 5, 183-190.	1.4	17
407	Atomistic understanding of the origin of high oxygen reduction electrocatalytic activity of cuboctahedral Pt ₃ Co–Pt core–shell nanoparticles. Catalysis Science and Technology, 2016, 6, 1393-1401.	2.1	17
408	Efficient photodechlorination of chlorophenols on polarized MZnB5O10 (M = Na and K) nonlinear optical materials. Applied Catalysis B: Environmental, 2016, 181, 436-444.	10.8	17
409	Glutathione-functionalized melamine sponge, a mimic of a natural antidote, as a quick responsive adsorbent for efficient removal of Hg(II) from aqueous solutions. Environmental Chemistry Letters, 2018, 16, 1429-1434.	8.3	17
410	Occurrence, distribution and composition of aliphatic and polycyclic aromatic hydrocarbons in sediment cores from the Lower Fox River, Wisconsin, US. Environmental Science and Pollution Research, 2018, 25, 4974-4988.	2.7	17
411	Determination of acrylamide in gingerbread and other food samples by HILIC-MS/MS: A dilute-and-shoot method. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1136, 121933.	1.2	17
412	Development of fluorescence surrogates to predict the ferrate(VI) oxidation of pharmaceuticals in wastewater effluents. Water Research, 2020, 185, 116256.	5.3	17
413	Reduction of Ionic Silver by Sulfur Dioxide as a Source of Silver Nanoparticles in the Environment. Environmental Science & Technology, 2021, 55, 5569-5578.	4.6	17

⁴¹⁴Seasonal Variability of the Texas †Brown Tide' (Aureoumbra lagunensis) in Relation to Environmental
Parameters. Estuarine, Coastal and Shelf Science, 1999, 48, 565-574.0.916

#	Article	IF	CITATIONS
415	Reactivity of ferrate(V) with aminopolycarboxylates in alkaline medium: A premix pulse radiolysis. Inorganica Chimica Acta, 2008, 361, 1041-1046.	1.2	16
416	A Novel Oxidation of Valine by N-Bromophthalimide in the Presence of Ruthenium(III) Chloride as a Homogeneous Catalyst. Catalysis Letters, 2009, 131, 98-104.	1.4	16
417	Kinetics and mechanism of oxidation of β-Alanine by N-bromophthalimide in the presence of Ru(III) chloride as homogenous catalyst in acidic medium. Transition Metal Chemistry, 2009, 34, 521-528.	0.7	16
418	Facile template-free synthesis of pine needle-like Pd micro/nano-leaves and their associated electro-catalytic activities toward oxidation of formic acid. Nanoscale Research Letters, 2011, 6, 381.	3.1	16
419	Enhancement of methanol electrocatalytic oxidation on platinized WO3–TiO2 composite electrode under visible light irradiation. Materials Research Bulletin, 2013, 48, 1099-1104.	2.7	16
420	Tuning Activities of K _{1.9} Na _{0.1} Ta ₂ O ₆ <i>·</i> 2H ₂ O Nanocrystals in Photocatalysis by Controlling Exposed Facets. ACS Applied Materials & Interfaces, 2013, 5, 10260-10265.	4.0	16
421	Confirmatory analysis of stanozolol metabolites in bovine, pig and sheep urines using an optimized clean-up and liquid chromatography–tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2014, 88, 45-52.	1.4	16
422	Dechlorination of chlorinated phenols by subnanoscale Pd0/Fe0 intercalated in smectite: pathway, reactivity, and selectivity. Journal of Hazardous Materials, 2015, 300, 779-787.	6.5	16
423	Screening and confirmation of steroids and nitroimidazoles in urine, blood, and food matrices: Sample preparation methods and liquid chromatography tandem mass spectrometric separations. Journal of Pharmaceutical and Biomedical Analysis, 2017, 145, 805-813.	1.4	16
424	Determination of Antimicrobial Residues in Honey by Liquid Chromatography Tandem Mass Spectrometry. Food Analytical Methods, 2018, 11, 2043-2055.	1.3	16
425	Dewatering and low-temperature pyrolysis of oily sludge in the presence of various agricultural biomasses. Environmental Technology (United Kingdom), 2018, 39, 2715-2723.	1.2	16
426	Improved charge carrier dynamics through a type II staggered Ce MOF/mc BiVO4 n-n heterojunction for enhanced visible light utilisation. Applied Surface Science, 2021, 553, 149556.	3.1	16
427	Dissolved metals in Alvarado Lagoon, Mexico. Environment International, 1998, 24, 721-727.	4.8	15
428	Thermal stability of the FellIEDTA complex in its monomeric form. Thermochimica Acta, 2008, 479, 53-58.	1.2	15
429	Kinetic study of the ruthenium(III)-catalyzed oxidation of glycine by N-bromophthalimide in acidic medium. Transition Metal Chemistry, 2010, 35, 407-414.	0.7	15
430	A Simple Potentiometric Titration Method to Determine Concentration of Ferrate(VI) in Strong Alkaline Solutions. Analytical Letters, 2011, 44, 1333-1340.	1.0	15
431	Mechanism of photocatalytic oxidation of amino acids: Hammett correlations. Catalysis Today, 2014, 224, 263-268.	2.2	15
432	Low-temperature pyrolysis of oily sludge: roles of Fe/Al-pillared bentonites. Archives of Environmental Protection, 2017, 43, 82-90.	1.1	15

#	Article	IF	CITATIONS
433	Morphology controlled synthesis of CeTiO4 using molten salts and enhanced photocatalytic activity for CO2 reduction. Applied Surface Science, 2018, 456, 360-368.	3.1	15
434	Chitosan Encapsulation of FerrateVI for Controlled Release to Water:Mechanistic Insights and Degradation of Organic Contaminant. Scientific Reports, 2019, 9, 18268.	1.6	15
435	Octylphenol and Nonylphenol in Surface Water of RÃjckevei-SoroksÃjri Danube Branch, Hungary. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40, 1679-1688.	0.9	14
436	Dissociation constants of protonated cysteine species in seawater media. Marine Chemistry, 2006, 99, 52-61.	0.9	14
437	Removal of Cyanide in Ni(II)–Cyanide, Ni(II)–Cyanide–EDTA, and Electroplating Rinse Wastewater by Ferrate(VI). Water, Air, and Soil Pollution, 2011, 219, 527-534.	1.1	14
438	Analysis of Sub Âg/kg Lincomycin in Honey, Muscle, Milk, and Eggs Using Fast Liquid Chromatography-Tandem Mass Spectrometry. Journal of Chromatographic Science, 2012, 50, 190-198.	0.7	14
439	Transformation of anthracene on various cation-modified clay minerals. Environmental Science and Pollution Research, 2015, 22, 1261-1269.	2.7	14
440	Iron based sustainable greener technologies to treat cyanobacteria and microcystin-LR in water. Water Science and Technology: Water Supply, 2017, 17, 107-114.	1.0	14
441	Black phosphorous-based nanostructures in environmental remediation: Current status and future perspectives. Chemical Engineering Journal, 2020, 389, 123460.	6.6	14
442	Optical chemosensors for the gas phase detection of aldehydes: mechanism, material design, and application. Materials Advances, 2021, 2, 6213-6245.	2.6	14
443	Paper-Based Vapor Detection of Formaldehyde: Colorimetric Sensing with High Sensitivity. Chemosensors, 2021, 9, 335.	1.8	14
444	Total Organic Carbon as a Quantitative Index of Micro- and Nano-Plastic Pollution. Analytical Chemistry, 2022, 94, 740-747.	3.2	14
445	Petroleum hydrocarbons in sediments of Upper Laguna Madre. Marine Pollution Bulletin, 1997, 34, 229-234.	2.3	13
446	Dissociation constants of protonated methionine species in NaCl media. Biophysical Chemistry, 2003, 105, 79-87.	1.5	13
447	Dissociation Constants for Citric Acid in NaCl and KCl Solutions and their Mixtures at 25 °C. Journal of Solution Chemistry, 2004, 33, 1349-1366.	0.6	13
448	A novel reusable platinum nanocatalyst. Materials Chemistry and Physics, 2010, 122, 10-14.	2.0	13
449	Solubility of Ferrate(VI) in NaOHâ^'KOH Mixtures at Different Temperatures. Journal of Chemical & Engineering Data, 2010, 55, 5594-5597.	1.0	13
450	Free-standing poly[poly(N-vinyl carbazole)]-supported Pt-based catalysts with enhanced performance for methanol electro-oxidation in alkaline medium. Fuel, 2012, 102, 560-566.	3.4	13

#	Article	IF	CITATIONS
451	Photocatalytic Degradation of Ni(II)-Cyano and Co(III)-Cyano Complexes. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	13
452	Separation and determination of degradation products of acid orange 7 by capillary electrophoresis/capacitively coupled contactless conductivity detector. Talanta, 2013, 111, 54-61.	2.9	13
453	Aggregation behaviors of alkyl ether carboxylate surfactants in water. Journal of Molecular Liquids, 2017, 227, 161-167.	2.3	13
454	Microwave-Enhanced Photolysis of Norfloxacin: Kinetics, Matrix Effects, and Degradation Pathways. International Journal of Environmental Research and Public Health, 2017, 14, 1564.	1.2	13
455	Removal of Cu(II) in water by polymer enhanced ultrafiltration: Influence of polymer nature and pH. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2018, 53, 33-38.	0.9	13
456	Environmental Antibiotics and Antibiotic Resistance: From Problems to Solutions. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	3.3	13
457	The kinetics of the complex formation between iron(III)–ethylenediaminetetraacetate and hydrogen peroxide in aqueous solution. Inorganica Chimica Acta, 2004, 357, 3583-3587.	1.2	12
458	Dissociation Constants of Protonated Oxidized Glutathione in Seawater Media at Different Salinities. Aquatic Geochemistry, 2010, 16, 447-466.	1.5	12
459	Pd(II) Catalyzed Oxidative Degradation of Paracetamol by Chloramine-T in Acidic and Alkaline Media. Industrial & Engineering Chemistry Research, 2011, 50, 8407-8419.	1.8	12
460	Enhanced Interface Charge Transfer of Zâ€Scheme Photocatalyst by Br Substitution at the Bay Position in Perylene Tetracarboxylic Diimide. Solar Rrl, 2020, 4, 2000303.	3.1	12
461	Thermal coupled photocatalysis to enhance CO2 reduction activities on Ag loaded g-C3N4 catalysts. Surfaces and Interfaces, 2021, 23, 101006.	1.5	12
462	Automation in quantifying phenoxy herbicides and bentazon in surface water and groundwater using novel solid phase extraction and liquid chromatography tandem mass spectrometry. Chemosphere, 2022, 286, 131927.	4.2	12
463	Modulation of photocatalytic activity of SrBi2Ta2O9 nanosheets in NO removal by tuning facets exposure. Journal of Materials Science and Technology, 2022, 122, 91-100.	5.6	12
464	Determining the stability constant of copper(I) halide complexes from kinetic measurements. Inorganic Chemistry, 1988, 27, 3256-3259.	1.9	11
465	Polycyclic aromatic hydrocarbons (PAHs) in surface waters of Ráckevei-Soroksári Danube Branch, Hungary. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 42, 231-240.	0.9	11
466	Water and time dependent interaction of iron(III) with indole-3-acetic acid. Structural Chemistry, 2008, 19, 109-114.	1.0	11
467	A nanocrystalline hematite film prepared from iron(III) chloride precursor. Thin Solid Films, 2010, 518, 5916-5919.	0.8	11
468	Degradation of anionic and cationic surfactants in a monolithic swirl-flow photoreactor. Separation and Purification Technology, 2012, 92, 43-49.	3.9	11

#	Article	IF	CITATIONS
469	Mössbauer investigation of the reaction of ferrate(VI) with sulfamethoxazole and aniline in alkaline medium. Hyperfine Interactions, 2014, 224, 7-13.	0.2	11
470	One step synthesis of silane-capped copper clusters as a sensitive optical probe and efficient catalyst for reversible color switching. RSC Advances, 2016, 6, 38897-38905.	1.7	11
471	Mechanistic Understanding of the Adsorption Behavior of Metal Lead Ions by Attapulgite-Induced Porous Nanocomposite Hydrogels. Journal of Chemical & Engineering Data, 2018, 63, 4241-4247.	1.0	11
472	Generation of Iron(IV) in the Oxidation of Amines by Ferrate(VI): Theoretical Insight and Implications in Oxidizing Pharmaceuticals. ACS ES&T Water, 2021, 1, 1932-1940.	2.3	11
473	Elucidating the Role of Dissolved Organic Matter and Sunlight in Mediating the Formation of Ag–Au Bimetallic Alloy Nanoparticles in the Aquatic Environment. Environmental Science & Technology, 2021, 55, 1710-1720.	4.6	11
474	Synthesis and Evaluation of Visible-Light Photocatalyst: Nitrogen-Doped TiO2/Bi2O3 Heterojunction Structures. Science of Advanced Materials, 2014, 6, 1892-1899.	0.1	11
475	Trace and heavy metals in San Andres Lagoon, Tamaulipas, Mexico. Environment International, 1993, 19, 71-77.	4.8	10
476	Metal ions in water and sediments of the Pom-Atasta Lagoon, Mexico. Environment International, 1999, 25, 599-604.	4.8	10
477	Effect of groundwater geochemistry on pentachlorophenol remediation by smectite-templated nanosized Pd0/Fe0. Environmental Science and Pollution Research, 2012, 19, 3498-3505.	2.7	10
478	Stability and Toxicity of Silver Nanoparticles in Aquatic Environment: A Review. ACS Symposium Series, 2013, , 165-179.	0.5	10
479	Ferryl and Ferrate Species: Mössbauer Spectroscopy Investigation. Croatica Chemica Acta, 2015, 88, 363-368.	0.1	10
480	Application of SPE followed by large-volume injection GC/MS for the analysis of geosmin and 2-methylisoborneol in water. Analytical Methods, 2015, 7, 6678-6685.	1.3	10
481	A systematic investigation on morphology tailoring, defect tuning and visible-light photocatalytic functionality of Ti-based perovskite nanostructures. Catalysis Today, 2019, 335, 591-598.	2.2	10
482	Magnesium ferrite-nitrogen–doped graphene oxide nanocomposite: effective adsorptive removal of lead(II) and arsenic(III). Environmental Science and Pollution Research, 2022, 29, 48260-48275.	2.7	10
483	Tunable construction of electrochemical sensors for chlorophenol detection. Journal of Materials Chemistry C, 2022, 10, 10171-10195.	2.7	10
484	Effect of ethylenediaminetetraacetate on the oxidation of cyanide in an electrochemical process. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 295-299.	0.9	9
485	Synthesis and photocatalytic property for H 2 production of H 1.78 Sr 0.78 Bi 0.22 Nb 2 O 7 nanosheets. Applied Surface Science, 2017, 391, 499-506.	3.1	9
486	Visible-light-enhanced electrocatalytic hydrogen production on semimetal bismuth nanorods. Applied Surface Science, 2019, 494, 293-300.	3.1	9

#	Article	IF	CITATIONS
487	Improved photo-dechlorination at polar photocatalysts K ₃ B ₆ O ₁₀ X (X = Cl, Br) by halogen atoms-modulated polarization. Catalysis Science and Technology, 2019, 9, 2273-2281.	2.1	9
488	Recent advance in metal- and covalent-organic framework-based photocatalysis for hydrogen evolution. Materials Today Chemistry, 2022, 26, 101037.	1.7	9
489	Treatment of Combined Sewer Overflows Using Ferrate (VI). Water Environment Research, 2014, 86, 2202-2211.	1.3	8
490	Luminescent Cu(0)@Cu(I)–TGA core–shell nanoclusters via self-assembly. Synthetic Metals, 2014, 198, 329-334.	2.1	8
491	Oxidation of Ni(II)-cyano and Co(III)-cyano complexes by Ferrate(VI): Effect of pH. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 1380-1384.	0.9	8
492	High Electrochemical Performance for Pb(II) Detection Based on N,S Co-Doped Porous Honeycomb Carbon Modified Electrodes. Journal of the Electrochemical Society, 2017, 164, B382-B389.	1.3	8
493	Chlorine decay and trihalomethane formation following ferrate(VI) preoxidation and chlorination of drinking water. Chemosphere, 2017, 187, 413-420.	4.2	8
494	Low-molecular-weight organic acids impede the degradation of naphthol in iron oxides/persulfate systems: Implications for research experiments in pure conditions. Chemosphere, 2019, 225, 1-8.	4.2	8
495	Quantification of aromatic amines derived from azo colorants in textile by ion-pairing liquid chromatography tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1137, 121957.	1.2	8
496	Degradation of perfluoroheptanoic acid in water by electron beam irradiation. Environmental Chemistry Letters, 2021, 19, 2689-2694.	8.3	8
497	A meta-analysis of photocatalytic performance and efficiency of bismuth oxide (BiO2_x). Journal of Cleaner Production, 2021, 322, 129070.	4.6	8
498	Bisphenols promote the conjugative transfer of antibiotic resistance genes without damaging cell membrane. Environmental Chemistry Letters, 2022, 20, 1553-1560.	8.3	8
499	Concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in Moss (Hypnum cupressiforme) from Hungary. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2003, 38, 2613-2619.	0.9	7
500	Effect of Ionic Strength and Temperature onÂtheÂProtonation of Oxidized Glutathione. Journal of Solution Chemistry, 2008, 37, 1245-1259.	0.6	7
501	Iron chelates: a challenge to chemists and Mössbauer spectroscopists. Hyperfine Interactions, 2008, 182, 77-86.	0.2	7
502	Magnetic Bimetallic Fe/Ag Nanoparticles: Decontamination and Antimicrobial Agents. ACS Symposium Series, 2013, , 193-209.	0.5	7
503	Controllable synthesis of two different morphologies of Cu2O particles with the assistance of carbon dots. RSC Advances, 2014, 4, 16524-16527.	1.7	7
504	Designed synthesis of hydroxyapatite nanostructures: bullet-like single crystal and whiskered hollow ellipsoid. Journal of Materials Science: Materials in Medicine, 2014, 25, 1395-1401.	1.7	7

#	Article	IF	CITATIONS
505	Thermal decomposition of barium ferrate(VI): Mechanism and formation of FeIV intermediate and nanocrystalline Fe2O3 and ferrite. Journal of Alloys and Compounds, 2016, 668, 73-79.	2.8	7
506	Evidence of Low-Dimensional Surface Structures for Oxide Materials: Impact on Energy Conversion. ACS Applied Energy Materials, 2018, 1, 6469-6476.	2.5	7
507	A Dilute and Shoot Strategy for Determining Alternaria Toxins in Tomato-Based Samples and in Different Flours Using LC-IDMS Separation. Molecules, 2021, 26, 1017.	1.7	7
508	Oxygen vacancies-modified S-scheme Bi2Ti2O7/CaTiO3 heterojunction for highly efficient photocatalytic NO removal under visible light. Journal of Environmental Chemical Engineering, 2022, 10, 107420.	3.3	7
509	Reactivity of nitrogen species with inorganic and organic compounds in water. Chemosphere, 2022, 302, 134911.	4.2	7
510	Cooperative Effects of Zwitterionic–lonic Surfactant Mixtures on the Interfacial Water Structure Revealed by Sum Frequency Generation Vibrational Spectroscopy. Langmuir, 2018, 34, 5273-5278.	1.6	6
511	Real-Time Atomic Scale Observation of Surface-Induced Crystallization of a Bismuth Nanodroplet by Stepwise Ordering Mechanism. Crystal Growth and Design, 2018, 18, 5808-5815.	1.4	6
512	Twoâ€Dimensional Layered Zinc Silicate Nanosheets with Excellent Photocatalytic Performance for Organic Pollutant Degradation and CO ₂ Conversion. Angewandte Chemie, 2019, 131, 8187-8192.	1.6	6
513	Sulfidation of sea urchin-like zinc oxide nanospheres: Kinetics, mechanisms, and impacts on growth of Escherichia coli. Science of the Total Environment, 2020, 741, 140415.	3.9	6
514	Potassium Ferrite (KFeO ₂): Synthesis, Decomposition, and Application for Removal of Metals. Science of Advanced Materials, 2015, 7, 579-587.	0.1	6
515	Trace metal species in aquatic samples of the Tabasco Lagoons, Mexico. Environment International, 1996, 22, 377-382.	4.8	5
516	Desulfurization of Mexican Heavy Oil by Sulfate-Reducing Bacteria. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40, 553-558.	0.9	5
517	Determination of submillimolar concentration of ferrate(VI) in alkaline solutions by amperometric titration. Open Chemistry, 2011, 9, 808-812.	1.0	5
518	Synthesis and photocatalytic hydrogen production activity of the Ni-CH3CH2NH2/H1.78Sr0.78Bi0.22Nb2O7 hybrid layered perovskite. Chinese Journal of Catalysis, 2017, 38, 2039-2047.	6.9	5
519	An Alternative Strategy for Screening and Confirmation of 330 Pesticides in Ground- and Surface Water Using Liquid Chromatography Tandem Mass Spectrometry. Molecules, 2022, 27, 1872.	1.7	5
520	Mössbauer studies of iron(III)-(indole-3-alkanoic acids) systems in frozen aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry, 2005, 266, 513-517.	0.7	4
521	Dissociation constants of protonated methionine species in seawater media. Marine Chemistry, 2007, 106, 463-470.	0.9	4
522	The Kinetics of the Interaction Between Iron(III)-Ethylenediaminetetraacetate and Peroxynitrite. Aquatic Geochemistry, 2010, 16, 483-490.	1.5	4

#	Article	IF	CITATIONS
523	Ferrate(VI): A Green Chemistry Oxidant for Removal of Antibiotics in Water. ACS Symposium Series, 2013, , 31-44.	0.5	4
524	Sensors for Environmental Monitoring. Journal of Sensors, 2016, 2016, 1-1.	0.6	4
525	Mechanism of thermal decomposition of K2FeO4 and BaFeO4: A review. Hyperfine Interactions, 2016, 237, 1.	0.2	4
526	Aptamer functionalized silver clusters for STED microscopy. RSC Advances, 2017, 7, 11821-11826.	1.7	4
527	Determination of Thyreostats in Urine Using Supported Liquid Extraction and Mixed-Mode Cation-Exchange Solid-Phase Extraction: Screening and Confirmatory Methods. Journal of Chromatographic Science, 2018, 56, 858-866.	0.7	4
528	Rapid mineralization of methyl orange by nanocrystalline-assembled mesoporous Cu2O microspheres. Nanotechnology, 2018, 29, 445701.	1.3	4
529	Enhanced photocatalytic hydrogen production by loading histidine on TiO ₂ . JPhys Energy, 2021, 3, 014001.	2.3	4
530	Cysteine-modified orange peel for removal of Cu(II) from aqueous solutions. Water Science and Technology, 2013, 67, 2444-2450.	1.2	3
531	Solar Energy Conversion by Nanostructured TiO2. International Journal of Photoenergy, 2014, 2014, 1-2.	1.4	3
532	Morphology-controlled synthesis and photocatalytic properties of K1.9Na0.1Ta2O6 2H2O. Chinese Journal of Catalysis, 2015, 36, 2164-2170.	6.9	3
533	Festschrift in Honor of Rajender S. Varma. ACS Sustainable Chemistry and Engineering, 2016, 4, 640-642.	3.2	3
534	Introduction. Journal of Hazardous Materials, 2016, 319, 1-2.	6.5	3
535	Investigation on composite Au /TiO2 nanoparticles (I). Science Bulletin, 1998, 43, 210-213.	1.7	2
536	Thermodynamics of Electrolyte Mixtures: HCl + NdCl3 + H2O from 5 to 55 â ^{~-} C. Journal of Solution Chemistry, 2005, 34, 1033-1044.	0.6	2
537	Monofluorinated Polycyclic Aromatic Hydrocarbons: Surrogate Standards for HPLC Analysis of Surface Water and Sediment Samples. Journal of Liquid Chromatography and Related Technologies, 2007, 31, 240-249.	0.5	2
538	Mössbauer study of the autoxidation of ethylenediaminetetraacetato-ferrate(II). Structural Chemistry, 2007, 18, 717-722.	1.0	2
539	Improved quantification of mass fraction of colorants in textile by high-performance liquid chromatography coupled with tandem mass spectrometric detector. Accreditation and Quality Assurance, 2020, 25, 259-272.	0.4	2
540	Ferrate(VI): A Green Molecule in Odorous Gas Treatment. ACS Symposium Series, 2014, , 193-207.	0.5	1

#	Article	IF	CITATIONS
541	A LC-MS/MS confirmatory method for determination of chloramphenicol in real samples screened by competitive immunoassay. Acta Alimentaria, 2014, 43, 306-314.	0.3	1
542	Thermo-photodynamic perspective of the simultaneous S-Scheme ternary heterostructure through Ag3VO4 shuttle for the increased photo-redox ability. Applied Materials Today, 2022, 27, 101435.	2.3	1
543	Mössbauer study of peroxynitrito complex formation with FellI-chelates. Hyperfine Interactions, 2012, 205, 17-21.	0.2	0
544	Rapid and efficient removal of Ni(II) in water using constant-current electrolysis. Desalination and Water Treatment, 2016, 57, 15952-15957.	1.0	0
545	Editorial [Hot Topic Functional Green Nanoâ€materials Guest Editors: Chuanyi Wang and Nurxat Nuraje]. Nanoscience and Nanotechnology - Asia, 2012, 2, 77-78.	0.3	0