Peng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5258254/publications.pdf

Version: 2024-02-01

113	5,072	35	67
papers	citations	h-index	g-index
113	113 docs citations	113	4402
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Liquid wicking flow characteristics in metallic screens with various weave densities. Heat and Mass Transfer, 2022, 58, 719-734.	1.2	2
2	Cryogenic wicking of liquid nitrogen in the metallic screens with different weave densities. International Journal of Heat and Mass Transfer, 2022, 183, 122208.	2.5	6
3	Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods. Renewable and Sustainable Energy Reviews, 2022, 156, 111977.	8.2	32
4	Condensation heat transfer on phase change slippery liquid-infused porous surfaces. International Journal of Heat and Mass Transfer, 2022, 185, 122384.	2.5	17
5	Optimization of the solar space heating system with thermal energy storage using data-driven approach. Renewable Energy, 2022, 190, 764-776.	4.3	27
6	Freezing dynamics of supercooled micro-sized water droplets. International Journal of Heat and Mass Transfer, 2022, 193, 122955.	2.5	10
7	Fundamentals, materials and strategies for personal thermal management by next-generation textiles. Composites Part A: Applied Science and Manufacturing, 2021, 142, 106249.	3.8	68
8	A comprehensive investigation of the mathematical models for a packed bed latent heat thermal energy storage system. International Journal of Energy Research, 2021, 45, 15005-15021.	2.2	13
9	Temperature non-uniformity in the radiative cooler and its effect on performance under various humidity conditions. Solar Energy, 2021, 220, 498-508.	2.9	13
10	Promoted Disappearance of CO2 Hydrate Self-Preservation Effect by Surfactant SDS. Energies, 2021, 14, 3909.	1.6	5
11	Thermal rectification of solid-liquid phase change thermal diode under the effect of supercooling. International Journal of Thermal Sciences, 2021, 164, 106856.	2.6	6
12	Emerging radiative materials and prospective applications of radiative sky cooling - A review. Renewable and Sustainable Energy Reviews, 2021, 144, 110910.	8.2	42
13	Experimental investigation of cryogenic flow quenching of horizontal stainless steel tubes. Cryogenics, 2021, 117, 103327.	0.9	7
14	Fabrication and characterization of fluffy mono-coated copper meshes and their applications for oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126883.	2.3	11
15	Cooling performance of porous polymer radiative coating under different environmental conditions throughout all-year. Solar Energy, 2021, 228, 474-485.	2.9	25
16	Numerical and experimental study of the thermal rectification of a solid-liquid phase change thermal diode. International Journal of Heat and Mass Transfer, 2020, 147, 118915.	2.5	15
17	Non-uniform melting of a spherical ice particle in free ascending. International Journal of Heat and Mass Transfer, 2020, 148, 119097.	2.5	11
18	A review of thermo-fluidic performance and application of shellless phase change slurry: Part 2 – Flow and heat transfer characteristics. Energy, 2020, 192, 116602.	4.5	12

#	Article	IF	CITATIONS
19	Bubble formation in viscous fluids by a microfluidic flow-focusing junction: a computational study. Microfluidics and Nanofluidics, 2020, 24, 1 .	1.0	9
20	CO ₂ Heat of Absorption in Aqueous Solutions of MDEA and MDEA/Piperazine. Journal of Chemical & Chem	1.0	18
21	Highly Solar-Reflective Structures for Daytime Radiative Cooling under High Humidity. ACS Applied Materials & Samp; Interfaces, 2020, 12, 51409-51417.	4.0	88
22	Phase-Change Slippery Liquid-Infused Porous Surfaces with Thermo-Responsive Wetting and Shedding States. ACS Applied Materials & States. ACS	4.0	42
23	Dynamic propagation of ice-water phase front in a supercooled water droplet. International Journal of Heat and Mass Transfer, 2020, 152, 119468.	2.5	40
24	Condensate droplet size distribution and heat transfer on hierarchical slippery lubricant infused porous surfaces. Applied Thermal Engineering, 2020, 176, 115386.	3.0	36
25	Cryogenic quenching of a stainless steel rodlet with various coatings. International Journal of Heat and Mass Transfer, 2020, 154, 119642.	2.5	17
26	Performance investigation of the direct absorption solar collector based on phase change slurry. Applied Thermal Engineering, 2019, 162, 114244.	3.0	22
27	Advanced thermal systems driven by paraffin-based phase change materials – A review. Applied Energy, 2019, 238, 582-611.	5.1	214
28	Power generation and longevity improvement of renewable energy systems via slippery surfaces – A review. Renewable Energy, 2019, 143, 922-938.	4.3	15
29	Cryogenic quenching enhancement of a nanoporous surface. International Journal of Heat and Mass Transfer, 2019, 134, 1061-1072.	2.5	21
30	A review of thermo-fluidic performance and application of shellless phase change slurry: Part 1 – Preparations, properties and applications. Energy, 2019, 189, 116246.	4.5	16
31	Semiclathrate based CO2 capture from fuel gas mixture at ambient temperature: Effect of concentrations of tetra-n-butylammonium fluoride (TBAF) and kinetic additives. Applied Energy, 2018, 217, 377-389.	5.1	58
32	Heat Transfer Characteristics of a Volumetric Absorption Solar Collector using Nano-Encapsulated Phase Change Slurry. Heat Transfer Engineering, 2018, 39, 1487-1497.	1.2	13
33	Investigation of thermo-fluidic performance of phase change material slurry and energy transport characteristics. Applied Energy, 2018, 227, 643-654.	5.1	30
34	Effect of Microstructures on Superhydrophobic and Slippery Lubricant-Infused Porous Surfaces During Condensation Phase-Change., 2018,,.		1
35	Water droplet impacting on overheated random Si nanowires. International Journal of Heat and Mass Transfer, 2018, 124, 307-318.	2.5	22
36	Nucleation Mechanisms of CO2 Hydrate Reflected by Gas Solubility. Scientific Reports, 2018, 8, 10441.	1.6	17

#	Article	IF	Citations
37	Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam. Applied Energy, 2017, 185, 1971-1983.	5.1	346
38	Experimental and numerical investigation of a tube-in-tank latent thermal energy storage unit using composite PCM. Applied Energy, 2017, 190, 524-539.	5.1	150
39	Role of impregnated lubricant in enhancing thermosyphon performance. International Journal of Heat and Mass Transfer, 2017, 109, 1229-1238.	2.5	29
40	Hydraulic and heat transfer characteristics of slush hydrogen in a circular pipe under terrestrial and microgravity conditions. International Journal of Heat and Mass Transfer, 2017, 110, 482-495.	2.5	9
41	Mass transfer of a rising spherical bubble in the contaminated solution with chemical reaction and volume change. International Journal of Heat and Mass Transfer, 2017, 110, 43-57.	2.5	22
42	Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35391-35403.	4.0	71
43	Heat transfer performance of a lubricant-infused thermosyphon at various filling ratios. International Journal of Heat and Mass Transfer, 2017, 115, 725-736.	2.5	28
44	The Leidenfrost Phenomenon on Sub-Micron Tapered Pillars., 2017,,.		3
45	Semiclathrate hydrate process for pre-combustion capture of CO 2 at near ambient temperatures. Applied Energy, 2017, 194, 267-278.	5.1	94
46	Systematic evaluation of semiclathrate-based pre-combustion CO 2 capture in presence of tetra-n-butylammonium fluoride (TBAF): effect of TBAF concentration and kinetic additives. Energy Procedia, 2017, 143, 506-511.	1.8	6
47	The Leidenfrost Phenomenon on Silicon Nanowires. , 2016, , .		3
48	Rheological and energy transport characteristics of a phase change material slurry. Energy, 2016, 106, 63-72.	4.5	40
49	Thermomechanical effects in supercritical binary fluids. International Journal of Heat and Mass Transfer, 2016, 99, 470-484.	2.5	6
50	Evolution of flow patterns and the associated heat and mass transfer characteristics during flow boiling in mini-/micro-channels. Chemical Engineering Journal, 2016, 306, 978-991.	6.6	26
51	Thermophysical properties and thermal characteristics of phase change emulsion for thermal energy storage media. Energy, 2016, 117, 562-568.	4.5	54
52	Impact of fixed bed reactor orientation, liquid saturation, bed volume and temperature on the clathrate hydrate process for pre-combustion carbon capture. Journal of Natural Gas Science and Engineering, 2016, 35, 1499-1510.	2.1	29
53	Review of fundamental properties of CO2 hydrates and CO2 capture and separation using hydration method. Renewable and Sustainable Energy Reviews, 2016, 53, 1273-1302.	8.2	189
54	Drag reduction and heat transfer characteristics of water flow through the tubes with superhydrophobic surfaces. Energy Conversion and Management, 2016, 113, 165-176.	4.4	41

#	Article	IF	CITATIONS
55	Conjugated heat and mass transfer during flow melting of a phase change material slurry in pipes. Energy, 2016, 99, 58-68.	4.5	18
56	Two-phase flow and heat transfer characteristics of tetra-n-butyl ammonium bromide clathrate hydrate slurry in horizontal 90° elbow pipe and U-pipe. International Journal of Heat and Mass Transfer, 2016, 97, 364-378.	2.5	23
57	Measurement of Latent Heat of Tetra-n-Butyl Ammonium Bromide Hydrate and Specific Enthalpy of Its Slurry. International Journal of Air-Conditioning and Refrigeration, 2015, 23, 1550025.	0.8	8
58	Study on the Optical Properties of Triangular Cavity Absorber for Parabolic Trough Solar Concentrator. International Journal of Photoenergy, 2015, 2015, 1-9.	1.4	13
59	Distribution of Energy Density and Optimization on the Surface of the Receiver for Parabolic Trough Solar Concentrator. International Journal of Photoenergy, 2015, 2015, 1-10.	1.4	3
60	How to enhance the effective thermal conductivity of composite material based on optimization method?. Energy, 2015, 87, 400-411.	4.5	10
61	Thermal Conductivity of Eutectic Nitrates and Nitrates/Expanded Graphite Composite as Phase Change Materials. Journal of Nanoscience and Nanotechnology, 2015, 15, 3135-3142.	0.9	11
62	Thermal Characterization of Lauric–Stearic Acid/Expanded Graphite Eutectic Mixture as Phase Change Materials. Journal of Nanoscience and Nanotechnology, 2015, 15, 3288-3294.	0.9	17
63	Numerical and experimental study of heat transfer characteristics of a shell-tube latent heat storage system: Part II – Discharging process. Energy, 2015, 80, 177-189.	4.5	36
64	A new study on the end loss effect for parabolic trough solar collectors. Energy, 2015, 82, 382-394.	4.5	28
65	A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications. Energy, 2015, 82, 1068-1087.	4.5	340
66	A numerical investigation of nucleate boiling at a constant surface temperature. Applied Thermal Engineering, 2015, 88, 248-257.	3.0	32
67	Experimental investigation of natural convection in a supercritical binary fluid. International Journal of Heat and Mass Transfer, 2015, 90, 922-930.	2.5	11
68	Experimental and numerical study of heat transfer performance of nitrate/expanded graphite composite PCM for solar energy storage. Energy Conversion and Management, 2015, 105, 272-284.	4.4	99
69	Experimental and Numerical Study of Heat Transfer Characteristics of a Paraffin/Metal Foam Composite PCM. Energy Procedia, 2015, 75, 3091-3097.	1.8	58
70	Experimental Investigation of Flow and Heat Transfer Characteristics in the Generation of Clathrate Hydrate Slurry. Heat Transfer Engineering, 2014, 35, 693-702.	1.2	7
71	Natural convection heat transfer of supercritical helium in a closed vertical cylinder. Cryogenics, 2014, 61, 120-126.	0.9	10
72	Structure optimization and performance experiments of a solar-powered finned-tube adsorption refrigeration system. Applied Energy, 2014, 113, 1293-1300.	5.1	46

#	Article	IF	Citations
73	Research on the compensation of the end loss effect for parabolic trough solar collectors. Applied Energy, 2014, 115, 128-139.	5.1	50
74	Experimental Investigation on Heat Storage/Retrieval Characteristics of a Latent Heat Storage System. Heat Transfer Engineering, 2014, 35, 1084-1097.	1.2	15
75	Thermal conductivity measurements of a phase change material slurry under the influence of phase change. International Journal of Thermal Sciences, 2014, 78, 56-64.	2.6	23
76	Cold storage by tetra-n-butyl ammonium bromide clathrate hydrate slurry generated with different storage approaches at 40Âwt% initial aqueous solution concentration. International Journal of Refrigeration, 2014, 42, 77-89.	1.8	16
77	Phase equilibrium and morphology characteristics of hydrates formed by tetra-n-butyl ammonium chloride and tetra-n-butyl phosphonium chloride with and without CO2. Fluid Phase Equilibria, 2014, 361, 208-214.	1.4	42
78	Experimental and Numerical Investigations of Phase Change Heat Transfer Characteristics in Open-Cell Metal Foam Infiltrated with Eutectic Salt for Solar Energy Storage. , 2014, , .		1
79	Thermal characterization of nitrates and nitrates/expanded graphite mixture phase change materials for solar energy storage. Energy Conversion and Management, 2013, 73, 86-94.	4.4	114
80	Preparation and thermal characterization of paraffin/metal foam composite phase change material. Applied Energy, 2013, 112, 1357-1366.	5.1	488
81	Pressure drop and flow pattern of slush nitrogen in a horizontal pipe. AICHE Journal, 2013, 59, 1762-1773.	1.8	19
82	Experimental investigation of the heat transfer characteristics of a helium cryogenic thermosyphon. Cryogenics, 2013, 57, 95-103.	0.9	13
83	An overview of heat transfer near the liquid–gas critical point under the influence of the piston effect: Phenomena and theory. International Journal of Thermal Sciences, 2013, 71, 1-19.	2.6	32
84	Modeling the heat transfer characteristics of flow melting of phase change material slurries in the circular tubes. International Journal of Heat and Mass Transfer, 2013, 64, 874-881.	2.5	43
85	Heat transfer characteristics of thermosyphon with N2–Ar binary mixture working fluid. International Journal of Heat and Mass Transfer, 2013, 63, 204-215.	2.5	22
86	Pressure drop and heat transfer characteristics of tetra-n-butyl ammonium bromide clathrate hydrate slurry during flow melting and generating in a double-tube heat exchanger. Experimental Thermal and Fluid Science, 2013, 44, 227-234.	1.5	12
87	Solid fraction determination in cold storage by tetra-n-butyl ammonium bromide clathrate hydrate slurry. International Journal of Refrigeration, 2013, 36, 809-819.	1.8	22
88	Flow and Heat Transfer Characteristics of Liquid Nitrogen in Mini-/Microchannels. Heat Transfer Engineering, 2013, 34, 204-212.	1,2	10
89	An overview of fundamental studies and applications of phase change material slurries to secondary loop refrigeration and air conditioning systems. Renewable and Sustainable Energy Reviews, 2012, 16, 5021-5058.	8.2	109
90	Rayleigh–Bénard convection in a supercritical fluid along its critical isochore in a shallow cavity. International Journal of Heat and Mass Transfer, 2012, 55, 7151-7165.	2.5	20

#	Article	IF	Citations
91	Numerical investigation of slush nitrogen flow in a horizontal pipe. Chemical Engineering Science, 2012, 73, 169-180.	1.9	34
92	Impact of cooling condition and filling ratio on heat transfer limit of cryogenic thermosyphon. Cryogenics, 2012, 52, 66-76.	0.9	21
93	Thermal conductivity measurement of the epoxies and composite material for low temperature superconducting magnet design. Cryogenics, 2011, 51, 534-540.	0.9	12
94	Thermal property measurement and heat transfer analysis of acetamide and acetamide/expanded graphite composite phase change material for solar heat storage. Solar Energy Materials and Solar Cells, 2011, 95, 2246-2254.	3.0	106
95	Pressure drop and heat transfer characteristics of clathrate hydrate slurry in a plate heat exchanger. International Journal of Refrigeration, 2011, 34, 796-806.	1.8	22
96	Visual Study of Flow Pattern Evolution of Flow Boiling in a Microtube. Heat Transfer Engineering, 2011, 32, 1009-1018.	1.2	4
97	Forced flow and convective melting heat transfer of clathrate hydrate slurry in tubes. International Journal of Heat and Mass Transfer, 2010, 53, 3745-3757.	2.5	104
98	On the transition from thermoacoustic convection to diffusion in a near-critical fluid. International Journal of Heat and Mass Transfer, 2010, 53, 4832-4843.	2.5	19
99	Bubble growth, departure and the following flow pattern evolution during flow boiling in a mini-tube. International Journal of Heat and Mass Transfer, 2010, 53, 4819-4831.	2.5	39
100	Preparation and thermal characterization of expanded graphite/paraffin composite phase change material. Carbon, 2010, 48, 2538-2548.	5.4	318
101	Thermoacoustic wave propagation and reflection near the liquid-gas critical point. Physical Review E, 2009, 79, 060103.	0.8	18
102	Two-phase flow characteristics of liquid nitrogen in vertically upward 0.5 and 1.0mm micro-tubes: Visualization studies. Cryogenics, 2009, 49, 565-575.	0.9	45
103	Investigation of solid-gas reaction heat transformer system with the consideration of multistep reactions. AICHE Journal, 2008, 54, 2464-2478.	1.8	16
104	Energy upgrading by solid–gas reaction heat transformer: A critical review. Renewable and Sustainable Energy Reviews, 2008, 12, 1302-1324.	8.2	45
105	Visualization of flow boiling of liquid nitrogen in a vertical mini-tube. International Journal of Multiphase Flow, 2008, 34, 333-351.	1.6	86
106	Composite Reactive Block for Heat Transformer System and Improvement of System Performance. Journal of Chemical Engineering of Japan, 2007, 40, 1275-1280.	0.3	16
107	Single-phase pressure drop and heat transfer characteristics of turbulent liquid nitrogen flow in micro-tubes. International Journal of Heat and Mass Transfer, 2007, 50, 1993-2001.	2.5	55
108	Flow boiling of liquid nitrogen in micro-tubes: Part I – The onset of nucleate boiling, two-phase flow instability and two-phase flow pressure drop. International Journal of Heat and Mass Transfer, 2007, 50, 4999-5016.	2.5	105

#	Article	IF	CITATIONS
109	Development and performance test of a cryoprobe with heat transfer enhancement configuration. Cryogenics, 2006, 46, 881-887.	0.9	6
110	Study of the transient thermal wave heat transfer in a channel immersed in a bath of superfluid helium. International Journal of Heat and Mass Transfer, 2006, 49, 1384-1394.	2.5	24
111	Experimental Study of Boiling Phenomena of Liquid Nitrogen Around a Thin Wire Heater in Open Bath and Inside Capillary Tubes. Nanoscale and Microscale Thermophysical Engineering, 2006, 10, 359-378.	1.4	0
112	Transient measurement of temperature oscillation during noisy film boiling in superfluid helium II. Science in China Series D: Earth Sciences, 2001, 44, 27-32.	0.9	5
113	Non-planar and Non-linear Second Sound Waves in He II. Chinese Physics Letters, 2000, 17, 43-45.	1.3	4