
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5257949/publications.pdf Version: 2024-02-01

Υσεμιμιέλ Ηλαιμλάλ

#	Article	IF	CITATIONS
1	Quantitative understanding of HepaRG cells during drugâ€induced intrahepatic cholestasis through changes in bile canaliculi dynamics. Pharmacology Research and Perspectives, 2022, 10, .	1.1	1
2	Noninvasive Evaluation of HepaRG Aggregates during Drugâ€Induced Intrahepatic Cholestasis Using Optical Coherence Tomography. Advanced Biology, 2021, 5, 2000198.	1.4	0
3	Breakdown of supersaturation barrier links protein folding to amyloid formation. Communications Biology, 2021, 4, 120.	2.0	39
4	Evolutionarily conserved sperm factors, DCST1 and DCST2, are required for gamete fusion. ELife, 2021, 10, .	2.8	51
5	Anti-EGFR VHH Antibody under Thermal Stress Is Better Solubilized with a Lysine than with an Arginine SEP Tag. Biomolecules, 2021, 11, 810.	1.8	4
6	Tight junction stabilization prevents HepaRG cell death in drug-induced intrahepatic cholestasis. Biology Open, 2021, 10, .	0.6	4
7	Immune response with long-term memory triggered by amorphous aggregates of misfolded anti-EGFR VHH-7D12 is directed against the native VHH-7D12 as well as the framework of the analogous VHH-9G8. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 165, 13-21.	2.0	6
8	Stress-activated leukocyte 12/15-lipoxygenase metabolite enhances struggle behaviour and tocotrienols relieve stress-induced behaviour alteration. Free Radical Biology and Medicine, 2021, 175, 171-183.	1.3	4
9	Switching of cell fate through the regulation of cell growth during drug-induced intrahepatic cholestasis. Journal of Bioscience and Bioengineering, 2020, 130, 659-665.	1.1	2
10	PCR-based approach for site-specific conjugation of long double-stranded DNA to a single-domain VHH antibody. Journal of Biochemistry, 2020, 168, 63-72.	0.9	0
11	The immunogenicity of an anti-EGFR single domain antibody (VHH) is enhanced by misfolded amorphous aggregation but not by heat-induced aggregation. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 152, 164-174.	2.0	16
12	Probucol induces the generation of lipid peroxidation products in erythrocytes and plasma of male cynomolgus macaques. Journal of Clinical Biochemistry and Nutrition, 2019, 64, 129-142.	0.6	6
13	Design and assessment of an active anti-epidermal growth factor receptor (EGFR) single chain variable fragment (ScFv) with improved solubility. Biochemical and Biophysical Research Communications, 2019, 508, 1043-1049.	1.0	17
14	Heat denaturation of the antibody, a multi-domain protein. Biophysical Reviews, 2018, 10, 255-258.	1.5	54
15	Early diagnosis of type 2 diabetes based on multiple biomarkers and non-invasive indices. Journal of Clinical Biochemistry and Nutrition, 2018, 62, 187-194.	0.6	5
16	Rapid Enzyme-linked Immunosorbent Assays for Diagnosis of Diabetes in a Compact Disc-shaped Microfluidic Device. Analytical Sciences, 2018, 34, 379-382.	0.8	11
17	Heat-Induced Aggregation of Hen Ovalbumin Suggests a Key Factor Responsible for Serpin Polymerization. Biochemistry, 2018, 57, 5415-5426.	1.2	13
18	Anti-survivin single-domain antibodies derived from an artificial library including three synthetic random regions by inÂvitro selection using cDNA display. Biochemical and Biophysical Research Communications, 2018, 503, 2054-2060.	1.0	20

#	Article	IF	CITATIONS
19	An open sandwich immunoassay for detection of 13(R,S)-hydroxy-9(E),11(E)-octadecadienoic acid. Analyst, The, 2017, 142, 787-793.	1.7	16
20	Enhanced in-cell folding of reversibly cationized transcription factor using amphipathic peptide. Journal of Bioscience and Bioengineering, 2017, 123, 419-424.	1.1	4
21	On-site identification of meat species in processed foods by a rapid real-time polymerase chain reaction system. Meat Science, 2017, 131, 56-59.	2.7	21
22	Ascorbic acid prevents zinc oxide nanoparticle–induced intracellular oxidative stress and inflammatory responses. Toxicology and Industrial Health, 2017, 33, 687-695.	0.6	15
23	Thioflavin T-Silent Denaturation Intermediates Support the Main-Chain-Dominated Architecture of Amyloid Fibrils. Biochemistry, 2016, 55, 3937-3948.	1.2	8
24	Oxidation and interaction of DJ-1 with 20S proteasome in the erythrocytes of early stage Parkinson's disease patients. Scientific Reports, 2016, 6, 30793.	1.6	30
25	Development of an on-site rapid real-time polymerase chain reaction system and the characterization of suitable DNA polymerases for TaqMan probe technology. Analytical and Bioanalytical Chemistry, 2016, 408, 5641-5649.	1.9	24
26	Physicochemical and biological characterizations of Pxt peptides from amphibian (Xenopus tropicalis) skin. Journal of Biochemistry, 2016, 159, 619-629.	0.9	4
27	The induction of lipid peroxidation during the acute oxidative stress response induced by intratracheal instillation of fine crystalline silica particles in rats. Toxicology and Industrial Health, 2016, 32, 1430-1437.	0.6	7
28	Cytotoxicity of CdSe-based quantum dots incorporated in glass nanoparticles evaluated using human keratinocyte HaCaT cells. Bioscience, Biotechnology and Biochemistry, 2016, 80, 210-213.	0.6	11
29	Changes in Cell Adhesiveness and Physicochemical Properties of Cross-Linked Albumin Films after Ultraviolet Irradiation. Langmuir, 2016, 32, 203-210.	1.6	7
30	Generation of a patterned co-culture system composed of adherent cells and immobilized nonadherent cells. Acta Biomaterialia, 2016, 31, 231-240.	4.1	15
31	Multicomponent Coculture System of Cancer Cells and Two Types of Stromal Cells for In Vitro Evaluation of Anticancer Drugs. Tissue Engineering - Part C: Methods, 2016, 22, 20-29.	1.1	11
32	The role of intra-domain disulfide bonds in heat-induced irreversible denaturation of camelid single domain VHH antibodies. Journal of Biochemistry, 2016, 159, 111-121.	0.9	24
33	Ascorbic acid attenuates acute pulmonary oxidative stress and inflammation caused by zinc oxide nanoparticles. Journal of Occupational Health, 2015, 57, 118-125.	1.0	34
34	Demand for the Early Detection of Diabetic Risk at Annual Health Examinations and A Probable Solution. Journal of Diabetes & Metabolism, 2015, 06, .	0.2	1
35	Probucol-Induced α-Tocopherol Deficiency Protects Mice against Malaria Infection. PLoS ONE, 2015, 10, e0136014.	1.1	14
36	Singlet-oxygen-derived products from linoleate activate Nrf2 signaling in skin cells. Free Radical Biology and Medicine, 2015, 79, 164-175.	1.3	24

#	Article	IF	CITATIONS
37	Isolation and characterization of antigen-specific alpaca (<i>Lama pacos</i>) VHH antibodies by biopanning followed by high-throughput sequencing. Journal of Biochemistry, 2015, 158, 205-215.	0.9	26
38	The Expression of Inflammatory Cytokine and Heme Oxygenase-1 Genes in THP-1 Cells Exposed to Metal Oxide Nanoparticles. Journal of Nano Research, 2015, 30, 116-127.	0.8	6
39	Enhancement of lipid peroxidation and its amelioration by vitamin E in a subject with mutations in the SBP2 gene. Journal of Lipid Research, 2015, 56, 2172-2182.	2.0	30
40	Oocyte-triggered dimerization of sperm IZUMO1 promotes sperm–egg fusion in mice. Nature Communications, 2015, 6, 8858.	5.8	87
41	Ultrasonication-dependent formation and degradation of α-synuclein amyloid fibrils. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 209-217.	1.1	21
42	Identification of novel peptides from amphibian (<i>XenopusÂtropicalis</i>) skin by direct tissue <scp>MALDI</scp> â€ <scp>MS</scp> analysis. FEBS Journal, 2015, 282, 102-113.	2.2	8
43	Highly efficient production of VHH antibody fragments in Brevibacillus choshinensis expression system. Protein Expression and Purification, 2015, 105, 23-32.	0.6	35
44	Evaluation of cellular influences caused by calcium carbonate nanoparticles. Chemico-Biological Interactions, 2014, 210, 64-76.	1.7	33
45	Engineering disulfide bonds within an antibody. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 2016-2023.	1.1	61
46	Acute pulmonary oxidative stress and inflammation caused by zinc oxide nanoparticles were prevented by vitamin C. Toxicology Letters, 2014, 229, S239.	0.4	0
47	Enzyme Hyperactivation System Based on a Complementary Charged Pair of Polyelectrolytes and Substrates. Langmuir, 2014, 30, 3826-3831.	1.6	44
48	Recent advances in antibody engineering. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1889-1890.	1.1	0
49	Facile immunostaining and labeling of nonadherent cells using a microfluidic device to entrap the cells. Journal of Bioscience and Bioengineering, 2014, 117, 375-378.	1.1	3
50	Heat-induced Irreversible Denaturation of the Camelid Single Domain VHH Antibody Is Governed by Chemical Modifications. Journal of Biological Chemistry, 2014, 289, 15666-15679.	1.6	34
51	Evaluation of cellular effects of silicon dioxide nanoparticles. Toxicology Mechanisms and Methods, 2014, 24, 196-203.	1.3	8
52	Cellular effects of industrial metal nanoparticles and hydrophilic carbon black dispersion. Journal of Toxicological Sciences, 2014, 39, 897-907.	0.7	13
53	Lysine pyrrolation is a naturally-occurring covalent modification involved in the production of DNA mimic proteins. Scientific Reports, 2014, 4, 5343.	1.6	20
54	Evaluation of biological activities of a groundnut (Apios americana Medik) extract containing a novel isoflavone. Food Chemistry, 2013, 138, 298-305.	4.2	23

#	Article	IF	CITATIONS
55	In vitro evaluation of cellular influences induced by stable fullerene C70 medium dispersion: Induction of cellular oxidative stress. Chemosphere, 2013, 93, 1182-1188.	4.2	10
56	Evaluation of the biological influence of a stable carbon nanohorn dispersion. Carbon, 2013, 54, 155-167.	5.4	16
57	Attenuation of lipopolysaccharide (LPS)-induced cytotoxicity by tocopherols and tocotrienols. Redox Biology, 2013, 1, 97-103.	3.9	69
58	Oxidative stress is involved in fatigue induced by overnight deskwork as assessed by increase in plasma tocopherylhydroqinone and hydroxycholesterol. Biological Psychology, 2013, 94, 527-533.	1.1	15
59	Rotatable Reagent Cartridge for High-Performance Microvalve System on a Centrifugal Microfluidic Device. Analytical Chemistry, 2013, 85, 6587-6592.	3.2	25
60	Molecular dissection of IZUMO1, a sperm protein essential for sperm-egg fusion. Development (Cambridge), 2013, 140, 3221-3229.	1.2	102
61	Singlet Oxygen Induced Products of Linoleates, 10- and 12-(Z,E)-Hydroxyoctadecadienoic Acids (HODE), Can Be Potential Biomarkers for Early Detection of Type 2 Diabetes. PLoS ONE, 2013, 8, e63542.	1.1	49
62	Structural Basis of α-Catenin Recognition by EspB from Enterohaemorrhagic E. coli Based on Hybrid Strategy Using Low-Resolution Structural and Protein Dissection. PLoS ONE, 2013, 8, e71618.	1.1	3
63	A Novel Role for α-Tocopherol Transfer Protein (α-TTP) in Protecting against Chloroquine Toxicity. Journal of Biological Chemistry, 2012, 287, 2926-2934.	1.6	17
64	Desorption/Ionization Efficiency of Peptides Containing Disulfide Bonds in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Sciences, 2012, 28, 295-299.	0.8	4
65	Carbon nanotube–liposome supramolecular nanotrains for intelligent molecular-transport systems. Nature Communications, 2012, 3, 1226.	5.8	68
66	Evaluation of cellular influences induced by stable nanodiamond dispersion; the cellular influences of nanodiamond are small. Diamond and Related Materials, 2012, 24, 15-24.	1.8	34
67	Capacity of peroxyl radical scavenging and inhibition of lipid peroxidation by β-carotene, lycopene, and commercial tomato juice. Food and Function, 2012, 3, 1153.	2.1	16
68	Photothermic regulation of gene expression triggered by laser-induced carbon nanohorns. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7523-7528.	3.3	96
69	Improvement of Single Domain Antibody Stability by Disulfide Bond Introduction. Methods in Molecular Biology, 2012, 911, 399-416.	0.4	9
70	Capacity of fucoxanthin for scavenging peroxyl radicals and inhibition of lipid peroxidation in model systems. Free Radical Research, 2012, 46, 1406-1412.	1.5	21
71	Comparison of acute oxidative stress on rat lung induced by nano and fine-scale, soluble and insoluble metal oxide particles: NiO and TiO ₂ . Inhalation Toxicology, 2012, 24, 391-400.	0.8	61
72	Fatty liver induced by free radicals and lipid peroxidation. Free Radical Research, 2012, 46, 758-765.	1.5	61

#	Article	IF	CITATIONS
73	Association of the physical and chemical properties and the cytotoxicity of metal oxide nanoparticles: metal ion release, adsorption ability and specific surface area. Metallomics, 2012, 4, 350.	1.0	156
74	Reactivity toward oxygen radicals and antioxidant action of thiol compounds. BioFactors, 2012, 38, 240-248.	2.6	20
75	Association of zinc ion release and oxidative stress induced by intratracheal instillation of ZnO nanoparticles to rat lung. Chemico-Biological Interactions, 2012, 198, 29-37.	1.7	158
76	Assessment of antioxidant capacity for scavenging free radicals in vitro: A rational basis and practical application. Free Radical Biology and Medicine, 2012, 52, 1242-1252.	1.3	82
77	Evaluation of cellular influences of platinum nanoparticles by stable medium dispersion. Metallomics, 2011, 3, 1244.	1.0	39
78	α-Tocopheryl phosphate: Uptake, hydrolysis, and antioxidant action in cultured cells and mouse. Free Radical Biology and Medicine, 2011, 50, 1794-1800.	1.3	32
79	α-Tocopherol suppresses lipid peroxidation and behavioral and cognitive impairments in the Ts65Dn mouse model of Down syndrome. Free Radical Biology and Medicine, 2011, 50, 1801-1811.	1.3	112
80	A Photoâ€Thermalâ€Electrical Converter Based On Carbon Nanotubes for Bioelectronic Applications. Angewandte Chemie - International Edition, 2011, 50, 12266-12270.	7.2	46
81	Cellular responses induced by cerium oxide nanoparticles: induction of intracellular calcium level and oxidative stress on culture cells. Journal of Biochemistry, 2011, 150, 461-471.	0.9	88
82	The amyloid fibrils of the constant domain of immunoglobulin light chain. FEBS Letters, 2010, 584, 3348-3353.	1.3	20
83	Ionization efficiency of αâ€helical peptides in laser desorption/ionization mass spectrometry. Journal of Mass Spectrometry, 2009, 44, 1119-1123.	0.7	3
84	The role of disulfide bond in the amyloidogenic state of β2-microglobulin studied by heteronuclear NMR. Protein Science, 2009, 11, 2218-2229.	3.1	91
85	Effect of phospholipids on conformational structure of bovine pancreatic trypsin inhibitor (BPTI) and its thermolabile mutants. Biopolymers, 2008, 89, 873-880.	1.2	2
86	Tertiary Structure and Carbohydrate Recognition by the Chitin-Binding Domain of a Hyperthermophilic Chitinase from Pyrococcus furiosus. Journal of Molecular Biology, 2008, 381, 670-680.	2.0	59
87	Oxidation of archaeal peroxiredoxin involves a hypervalent sulfur intermediate. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6238-6242.	3.3	57
88	Hypervalent intermediate of archaeal peroxiredoxin. Acta Crystallographica Section A: Foundations and Advances, 2008, 64, C254-C254.	0.3	0
89	3P-008 The ability of fibril formation of the constant domain of immunoglobulin light chain in comparison with β2-microglobulin(The 46th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2008, 48, S129.	0.0	0
90	Analysis of the Putative Substrate Binding Region of Hyperthermophilic Endoglucanase from <i>Pyrococcus horikoshii</i> . Bioscience, Biotechnology and Biochemistry, 2007, 71, 2585-2587.	0.6	10

#	Article	IF	CITATIONS
91	Stabilization of an Immunoglobulin Fold Domain by an Engineered Disulfide Bond at the Buried Hydrophobic Region. Journal of Biological Chemistry, 2007, 282, 36489-36495.	1.6	91
92	Structure of the catalytic domain of the hyperthermophilic chitinase fromPyrococcus furiosus. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 7-11.	0.7	24
93	Crystallization and X-ray diffraction analysis of a catalytic domain of hyperthermophilic chitinase fromPyrococcus furiosus. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 791-793.	0.7	6
94	NMR assignment of the chitin-binding domain of a hyperthermophilic chitinase from Pyrococcus furiosus. Journal of Biomolecular NMR, 2006, 36, 70-70.	1.6	3
95	Structural studies reveal that the diverse morphology of β2-microglobulin aggregates is a reflection of different molecular architectures. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1753, 108-120.	1.1	39
96	Amyloid fibril formation by the CAD domain of caspase-activated DNase. Biopolymers, 2005, 79, 39-47.	1.2	6
97	Crystallization and preliminary X-ray diffraction analysis of thioredoxin peroxidase from the aerobic hyperthermophilic archaeonAeropyrum pernixK1. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 323-325.	0.7	10
98	Crystallization and preliminary X-ray diffraction analysis of a chitin-binding domain of hyperthermophilic chitinase fromPyrococcus furiosus. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 476-478.	0.7	10
99	Crystal structure of thioredoxin peroxidase from aerobic hyperthermophilic archaeon Aeropyrum pernix K1. Proteins: Structure, Function and Bioinformatics, 2005, 62, 822-826.	1.5	27
100	Identification of the Region Responsible for Fibril Formation in the CAD Domain of Caspase-Activated DNase. Journal of Biochemistry, 2005, 138, 815-819.	0.9	0
101	Cellular Quality Control Screening to Identify Amino Acid Pairs for Substituting the Disulfide Bonds in Immunoglobulin Fold Domains. Journal of Biological Chemistry, 2005, 280, 24752-24758.	1.6	18
102	Crystal structure of hyperthermostable thioredoxin peroxidase from <i>Aeropyrum pernix</i> K1. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, c262-c262.	0.3	1
103	Amyloid Fibril Formation in the Context of Full-length Protein. Journal of Biological Chemistry, 2003, 278, 47016-47024.	1.6	112
104	Screening for Stable Mutants with Amino Acid Pairs Substituted for the Disulfide Bond between Residues 14 and 38 of Bovine Pancreatic Trypsin Inhibitor (BPTI). Journal of Biological Chemistry, 2002, 277, 51043-51048.	1.6	23
105	Investigation of a Peptide Responsible for Amyloid Fibril Formation of $\hat{1}^2$ 2-Microglobulin byAchromobacter Protease I. Journal of Biological Chemistry, 2002, 277, 1310-1315.	1.6	116
106	Toward development of a screen to identify randomly encoded, foldable sequences. Proceedings of the United States of America, 2002, 99, 6619-6624.	3.3	34
107	The Intrachain Disulfide Bond of Â2-Microglobulin Is Not Essential for the Immunoglobulin Fold at Neutral pH, but Is Essential for Amyloid Fibril Formation at Acidic pH. Journal of Biochemistry, 2002, 131, 45-52.	0.9	86
108	Aggregation of β2-Glycoprotein I Induced by Sodium Lauryl Sulfate and Lysophospholipidsâ€. Biochemistry, 2002, 41, 1020-1026.	1.2	42

#	Article	IF	CITATIONS
109	Mapping the core of the β2-microglobulin amyloid fibril by H/D exchange. Nature Structural Biology, 2002, 9, 332-336.	9.7	310
110	Flexible Loop of β2-Glycoprotein I Domain V Specifically Interacts with Hydrophobic Ligands. Biochemistry, 2001, 40, 8092-8100.	1.2	28
111	Identification of the Phospholipid-binding Site of Human β2-Clycoprotein I Domain V by Heteronuclear Magnetic Resonance. Journal of Molecular Biology, 2000, 304, 927-939.	2.0	45
112	Three Dimensional Structrure of Sushi Domains Japanese Journal of Thrombosis and Hemostasis, 1999, 10, 457-462.	0.1	1
113	Chain-like conformation of heat-denatured ribonuclease A and cytochromec as evidenced by solution X-ray scattering. Folding & Design, 1998, 3, 195-201.	4.5	34
114	Plasmin Can Reduce the Function of Human β2Glycoprotein I by Cleaving Domain V Into a Nicked Form. Blood, 1998, 91, 4173-4179.	0.6	54
115	Plasmin Can Reduce the Function of Human β2Glycoprotein I by Cleaving Domain V Into a Nicked Form. Blood, 1998, 91, 4173-4179.	0.6	4
116	Trifluoroethanol-induced conformational transition of hen egg-white lysozyme studied by small-angle X-ray scattering. FEBS Letters, 1997, 416, 72-76.	1.3	62
117	Role of the N- and C-Terminal Domains of Bovine β2-Glycoprotein I in Its Interaction with Cardiolipin1. Journal of Biochemistry, 1995, 118, 129-136.	0.9	45
118	Structure and Function of \hat{l}^2 (sub>2 (sub>-Glycoprotein I: With Special Reference to the Interaction with Phospholipid. Lupus, 1995, 4, S3-S5.	0.8	7
119	Thermal unfolding of tetrameric melittin: Comparison with the molten globule state of cytochrome <i>c</i> . Protein Science, 1994, 3, 1418-1429.	3.1	45
120	Comparison of the Conformational Stability of the Molten Globule and Native States of Horse Cytochrome c. Journal of Molecular Biology, 1994, 237, 336-348.	2.0	174
121	Molten Globule of Cytochrome c Studied by Small Angle X-ray Scattering. Journal of Molecular Biology, 1993, 229, 591-596.	2.0	239
122	Guanidine Hydrochloride-induced Folding of Proteins. Journal of Molecular Biology, 1993, 231, 180-184.	2.0	140
123	Acid-induced unfolding and refolding transitions of cytochrome c: A three-state mechanism in water and deuterium oxide. Biochemistry, 1993, 32, 11878-11885.	1.2	123
124	Charge repulsion in the conformational stability of melittin. Biochemistry, 1992, 31, 11908-11914.	1.2	45
125	Mechanism of the conformational transition of melittin. Biochemistry, 1992, 31, 732-738.	1.2	76