List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5257270/publications.pdf Version: 2024-02-01

<u> 7ниномс Ц</u>

#	Article	IF	CITATIONS
1	A SMALL-ANGLE X-RAY SCATTERING STATION AT BEIJING SYNCHROTRON RADIATION FACILITY. Instrumentation Science and Technology, 2014, 42, 128-141.	1.8	175
2	Structural evolution of tensile deformed high-density polyethylene at elevated temperatures: Scanning synchrotron small- and wide-angle X-ray scattering studies. Polymer, 2009, 50, 4101-4111.	3.8	133
3	Ionic liquid accelerates the crystallization of Zr-based metal–organic frameworks. Nature Communications, 2017, 8, 175.	12.8	111
4	Effect of high hydrostatic pressure on the supramolecular structure of corn starch with different amylose contents. International Journal of Biological Macromolecules, 2016, 85, 604-614.	7.5	52
5	Density fluctuation in silica–PVA hybrid gels determined by small-angle X-ray scattering. Applied Surface Science, 2004, 225, 116-123.	6.1	47
6	Structural evolution of melt-drawn transparent high-density polyethylene during heating and annealing: Synchrotron small-angle X-ray scattering study. European Polymer Journal, 2010, 46, 1866-1877.	5.4	47
7	Absolute intensity calibration and application at BSRF SAXS station. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 900, 64-68.	1.6	40
8	MOF-derived multifractal porous carbon with ultrahigh lithium-ion storage performance. Scientific Reports, 2017, 7, 40574.	3.3	36
9	Effects of Structure Dissymmetry on Aggregation Behaviors of Quaternary Ammonium Gemini Surfactants in a Protic Ionic Liquid EAN. Langmuir, 2012, 28, 16547-16554.	3.5	35
10	Structure evolution of aluminosilicate sol and its structure-directing effect on the synthesis of NaY zeolite. Journal of Applied Crystallography, 2017, 50, 231-239.	4.5	33
11	Mesoporous inorganic salts with crystal defects: unusual catalysts and catalyst supports. Chemical Science, 2015, 6, 1668-1675.	7.4	32
12	Influence of annealing temperature on the lamellar and connecting bridge structure of stretched polypropylene microporous membrane. Polymer International, 2015, 64, 446-452.	3.1	32
13	In-situ SAXS study on pore structure change of PAN-based carbon fiber during graphitization. Microporous and Mesoporous Materials, 2021, 323, 111201.	4.4	27
14	Lyotropic liquid crystalline phases formed by phyosterol ethoxylates in room-temperature ionic liquids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 392, 225-232.	4.7	26
15	Nonaqueous Lyotropic Liquid-Crystalline Phases Formed by Gemini Surfactants in a Protic Ionic Liquid. Langmuir, 2012, 28, 2476-2484.	3.5	25
16	In-situ SAXS study of pore structure during carbonization of non-caking coal briquettes. Fuel, 2020, 262, 116547.	6.4	22
17	Cylindrical-to-Spherical Shape Transformation of Lecithin Reverse Micelles Induced by CO2. Langmuir, 2010, 26, 4581-4585.	3.5	20
18	Waterâ€inâ€Supercritical CO ₂ Microemulsion Stabilized by a Metal Complex. Angewandte Chemie - International Edition, 2016, 55, 13533-13537.	13.8	18

#	Article	IF	CITATIONS
19	Chirality of Graphene Oxide–Humic Acid Sandwich Complex Induced by a Twisted, Long-Range-Ordered Nanostructure. Journal of Physical Chemistry C, 2016, 120, 25789-25795.	3.1	17
20	Efficient assembly of hierarchical NaY aggregates by using an organosilane modified SDA. Microporous and Mesoporous Materials, 2018, 264, 92-103.	4.4	16
21	"Desert Rose―MCM-22 microsphere: Synthesis, formation mechanism and alkylation performance. Microporous and Mesoporous Materials, 2021, 315, 110910.	4.4	16
22	CO2-responsive TX-100 emulsion for selective synthesis of 1D or 3D gold. Soft Matter, 2010, 6, 6200.	2.7	14
23	Small furnace for the small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) characterization of the high temperature carbonization of coal. Instrumentation Science and Technology, 2021, 49, 445-456.	1.8	13
24	Small-angle X-ray scattering study on the microstructure evolution of zirconia nanoparticles during calcination. Journal of Solid State Chemistry, 2006, 179, 959-967.	2.9	12
25	Small-angle X-ray scattering study on the fractal structure of solid products of bituminous coal at different carbonization temperatures. Philosophical Magazine Letters, 2019, 99, 95-101.	1.2	12
26	In-situ SAXS study on fractal of Jincheng anthracite during high-temperature carbonisation. Philosophical Magazine Letters, 2021, 101, 320-329.	1.2	12
27	β Zeolite Nanostructures with a High SiO ₂ /Al ₂ O ₃ Ratio for the Adsorption of Volatile Organic Compounds. ACS Applied Nano Materials, 2021, 4, 13257-13266.	5.0	12
28	Formation of super-concentrated hydrochloric acid in the third phase in tertiary amine N235-PtCl 6 2â^' -HCl system and its influences on the Pt microemulsion extraction. Science in China Series B: Chemistry, 2009, 52, 1825-1834.	0.8	10
29	Lyotropic Liquid Crystalline Phases of a Phytosterol Ethoxylate in Amide Solvents. Langmuir, 2013, 29, 11013-11021.	3.5	10
30	Calibration of instrument and sample parameters for small angle X-ray scattering. Instrumentation Science and Technology, 2016, 44, 521-536.	1.8	10
31	<i>In situ</i> SAXS study of fractal structure of non-caking coal during carbonisation. Philosophical Magazine Letters, 2021, 101, 60-67.	1.2	10
32	Thermal stability of anatase TiO ₂ aerogels. Surface and Interface Analysis, 2017, 49, 173-176.	1.8	9
33	Determination of specific surfaces of silica xerogets by SAXS. Science Bulletin, 2000, 45, 1386-1390.	1.7	8
34	Evaluation on Pore Structures of Organosilicate Thin Films by Grazing Incidence Small-Angle X-ray Scattering. Journal of Physical Chemistry B, 2009, 113, 12623-12627.	2.6	6
35	Waterâ€inâ€Supercritical CO ₂ Microemulsion Stabilized by a Metal Complex. Angewandte Chemie, 2016, 128, 13731-13735.	2.0	6
36	Formation of large nanodomains in liquid solutions near the phase boundary. Chemical Communications, 2016, 52, 14286-14289.	4.1	6

#	Article	IF	CITATIONS
37	Angle calibration and error analysis of wide-angle X-ray scattering (WAXS) with a one-dimensional linear detector. Instrumentation Science and Technology, 0, , 1-12.	1.8	6
38	<i>In situ</i> wide-angle X-ray scattering study on the change of microcrystalline structure in Jincheng anthracite during high-temperature carbonization. Journal of Applied Crystallography, 2022, 55, 265-270.	4.5	6
39	Formation of pyrrolidinium fatty acid soap and its lyotropic liquid crystalline phase behavior. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 426, 55-62.	4.7	5
40	Measurement of d-spacing of crystalline samples with SAXS. Measurement: Journal of the International Measurement Confederation, 2016, 93, 473-479.	5.0	5
41	Fabrication of Twin-Free Nanoslab ZSM-5 Zeolite with <i>b</i> -Axis Orientation for Super MTP Catalyst. ACS Sustainable Chemistry and Engineering, 2022, 10, 9431-9442.	6.7	5
42	Measurement of protein size in concentrated solutions by small angle Xâ€ray scattering. Protein Science, 2016, 25, 1385-1389.	7.6	4
43	Temperature-driven directional coalescence of silver nanoparticles. Journal of Synchrotron Radiation, 2016, 23, 718-728.	2.4	4
44	Enhancing primary processing for small-angle X-ray scattering. Instrumentation Science and Technology, 2017, 45, 22-34.	1.8	4
45	Simple carbon fiber graphitization device for in-situ measurement of small angle X-ray scattering (SAXS). Instrumentation Science and Technology, 2021, 49, 21-31.	1.8	4
46	Furnace for in-situ characterization of the preoxidation of polyacrylonitrile (PAN) fibers by wide angle X-ray scattering (WAXS). Instrumentation Science and Technology, 2022, 50, 321-333.	1.8	4
47	Superconcentrated Hydrochloric Acid. Journal of Physical Chemistry B, 2011, 115, 7823-7829.	2.6	3
48	Optimization of a three slit collimation system for a SAXS camera with a divergent beam. Journal of X-Ray Science and Technology, 2012, 20, 331-338.	1.0	3
49	<i>In situ</i> change of fractal structure in coal with coking capability during high-temperature carbonisation. Philosophical Magazine Letters, 2022, 102, 81-92.	1.2	3
50	Dual-template synthesis of thinner-layered MCM-49 zeolite to boost its alkylation performance. Molecular Catalysis, 2022, 524, 112333.	2.0	3
51	Using a standard sample to estimate the X-ray wavelength of the 1W2A SAXS beamline at BSRF. Journal of Synchrotron Radiation, 2013, 20, 729-733.	2.4	2
52	CO2as a smart gelator for Pluronic aqueous solutions. Chemical Communications, 2014, 50, 14233-14236.	4.1	2
53	A high temperature furnace for in-situ SAXS measurement of coal carbonisation. International Journal of Oil, Gas and Coal Technology, 2020, 23, 365.	0.2	2
54	Continuous flow time-resolved small-angle x-ray scattering and X-ray absorption spectroscopy. Instrumentation Science and Technology, 2016, 44, 537-546.	1.8	1

#	Article	IF	CITATIONS
55	Conceptual design of a simple small angle X-ray scattering (SAXS) beamline. Instrumentation Science and Technology, 2021, 49, 560-570.	1.8	1
56	A high temperature furnace for in-situ SAXS measurement of coal carbonization. International Journal of Oil, Gas and Coal Technology, 2018, 1, 1.	0.2	1
57	A simple vacuum sample chamber for small-angle X-ray scattering at Beijing synchrotron radiation facility. Radiation Detection Technology and Methods, 2019, 3, 1.	0.8	0