Robert I Richards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5257188/publications.pdf

Version: 2024-02-01

70 papers 11,035 citations

36 h-index 70 g-index

71 all docs

71 docs citations

times ranked

71

17085 citing authors

#	Article	IF	CITATIONS
1	Molecular Biology of the WWOX Gene That Spans Chromosomal Fragile Site FRA16D. Cells, 2021, 10, 1637.	1.8	5
2	Non-self mutation: double-stranded RNA elicits antiviral pathogenic response in a Drosophila model of expanded CAG repeat neurodegenerative diseases. Human Molecular Genetics, 2019, 28, 3000-3012.	1.4	5
3	Neurodegenerative diseases have genetic hallmarks of autoinflammatory disease. Human Molecular Genetics, 2018, 27, R108-R118.	1.4	21
4	Neuronal-specific impairment of heparan sulfate degradation in Drosophila reveals pathogenic mechanisms for Mucopolysaccharidosis type IIIA. Experimental Neurology, 2018, 303, 38-47.	2.0	16
5	The Enemy within: Innate Surveillance-Mediated Cell Death, the Common Mechanism of Neurodegenerative Disease. Frontiers in Neuroscience, 2016, 10, 193.	1.4	30
6	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
7	Tumor suppressor <scp>WWOX</scp> moderates the mitochondrial respiratory complex. Genes Chromosomes and Cancer, 2015, 54, 745-761.	1.5	30
8	Tumor Suppressor WWOX Contributes to the Elimination of Tumorigenic Cells in Drosophila melanogaster. PLoS ONE, 2015, 10, e0136356.	1.1	16
9	<i>WWOX,</i> the chromosomal fragile site <i>FRA16D</i> spanning gene: Its role in metabolism and contribution to cancer. Experimental Biology and Medicine, 2015, 240, 338-344.	1.1	29
10	Common chromosomal fragile site <i>FRA16D</i> tumor suppressor <i>WWOX</i> gene expression and metabolic reprograming in cells. Genes Chromosomes and Cancer, 2013, 52, 823-831.	1.5	27
11	Distinct roles for Toll and autophagy pathways in double-stranded RNA toxicity in a Drosophila model of expanded repeat neurodegenerative diseases. Human Molecular Genetics, 2013, 22, 2811-2819.	1.4	19
12	RNA pathogenesis via Toll-like receptor-activated inflammation in expanded repeat neurodegenerative diseases. Frontiers in Molecular Neuroscience, 2013, 6, 25.	1.4	10
13	Comparative toxicity of polyglutamine, polyalanine and polyleucine tracts in Drosophila models of expanded repeat disease. Human Molecular Genetics, 2012, 21, 536-547.	1.4	24
14	Dynamic Mutations. Advances in Experimental Medicine and Biology, 2012, , 55-77.	0.8	9
15	Ubiquitous Expression of CUG or CAG Trinucleotide Repeat RNA Causes Common Morphological Defects in a Drosophila Model of RNA-Mediated Pathology. PLoS ONE, 2012, 7, e38516.	1.1	9
16	Perturbation of the Akt/Gsk3-β signalling pathway is common to Drosophila expressing expanded untranslated CAG, CUG and AUUCU repeat RNAs. Human Molecular Genetics, 2011, 20, 2783-2794.	1.4	30
17	Drosophila orthologue of WWOX, the chromosomal fragile site FRA16D tumour suppressor gene, functions in aerobic metabolism and regulates reactive oxygen species. Human Molecular Genetics, 2011, 20, 497-509.	1.4	56
18	Double-stranded RNA is pathogenic in Drosophila models of expanded repeat neurodegenerative diseases. Human Molecular Genetics, 2011, 20, 3757-3768.	1.4	50

#	Article	IF	CITATIONS
19	Selective neuronal requirement for huntingtin in the developing zebrafish. Human Molecular Genetics, 2009, 18, 4830-4842.	1.4	47
20	Huntingtin-deficient zebrafish exhibit defects in iron utilization and development. Human Molecular Genetics, 2007, 16, 1905-1920.	1.4	136
21	Know thy fly. Trends in Genetics, 2007, 23, 238-242.	2.9	17
22	Common chromosomal fragile sites and cancer: Focus on FRA16D. Cancer Letters, 2006, 232, 37-47.	3.2	67
23	Contribution of mGluR and Fmr1 functional pathways to neurite morphogenesis, craniofacial development and fragile X syndrome. Human Molecular Genetics, 2006, 15, 3446-3458.	1.4	117
24	Chromosomal Fragile Sites: Mechanisms of Cytogenetic Expression and Pathogenic Consequences., 2006,, 195-207.		0
25	FRA16D common chromosomal fragile site oxido-reductase (FOR/WWOX) protects against the effects of ionizing radiation in Drosophila. Oncogene, 2005, 24, 6590-6596.	2.6	23
26	Molecular genetics of pseudoxanthoma elasticum: type and frequency of mutations inABCC6. Human Mutation, 2005, 26, 235-248.	1.1	365
27	Common chromosomal fragile site FRA16D mutation in cancer cells. Human Molecular Genetics, 2005, 14, 1341-1349.	1.4	66
28	The pathogenic agent in Drosophila models of â€~polyglutamine' diseases. Human Molecular Genetics, 2005, 14, 1041-1048.	1.4	37
29	Expression of three zebrafish orthologs of human FMR1-related genes and their phylogenetic relationships. Development Genes and Evolution, 2004, 214, 567-574.	0.4	36
30	A novel Q378X mutation exists in the transmembrane transporter protein ABCC6 and its pseudogene: implications for mutation analysis in pseudoxanthoma elasticum. Journal of Molecular Medicine, 2001, 79, 536-546.	1.7	48
31	Fragile and unstable chromosomes in cancer: causes and consequences. Trends in Genetics, 2001, 17, 339-345.	2.9	208
32	Analysis of replication timing at the FRA10B and FRA16B fragile site loci. Chromosome Research, 2000, 8, 677-688.	1.0	34
33	A 500-kb region on chromosome 16p13.1 contains the pseudoxanthoma elasticum locus: high-resolution mapping and genomic structure. Journal of Molecular Medicine, 2000, 78, 36-46.	1.7	63
34	Mutations of the gene encoding the transmembrane transporter protein ABC-C6 cause pseudoxanthoma elasticum. Journal of Molecular Medicine, 2000, 78, 282-286.	1.7	118
35	Fragile Sites and Minisatellite Repeat Instability. Molecular Genetics and Metabolism, 2000, 70, 99-105.	0.5	28
36	Fragile Sitesâ€"Cytogenetic Similarity with Molecular Diversity. American Journal of Human Genetics, 1999, 64, 354-359.	2.6	41

#	Article	IF	CITATIONS
37	Fragile sites still breaking. Trends in Genetics, 1998, 14, 501-506.	2.9	149
38	FRA10B Structure Reveals Common Elements in Repeat Expansion and Chromosomal Fragile Site Genesis. Molecular Cell, 1998, 1, 773-781.	4.5	92
39	Construction of an â ¹ ¼700-kb Transcript Map Around the Familial Mediterranean Fever Locus on Human Chromosome 16p13.3. Genome Research, 1998, 8, 1172-1191.	2.4	17
40	Construction of a 1-Mb Restriction-Mapped Cosmid Contig Containing the Candidate Region for the Familial Mediterranean Fever Locus (MEFV) on Chromosome 16p13.3. Genomics, 1997, 42, 83-95.	1.3	22
41	Chromosomal Localization of the Human P2y6Purinoceptor Gene and Phylogenetic Analysis of the P2y Purinoceptor Family. Genomics, 1997, 44, 127-130.	1.3	13
42	A High-Resolution Genetic Map of the Familial Mediterranean Fever Candidate Region Allows Identification of Haplotype-Sharing among Ethnic Groups. Genomics, 1997, 44, 280-291.	1.3	43
43	Human Chromosomal Fragile Site FRA16B Is an Amplified AT-Rich Minisatellite Repeat. Cell, 1997, 88, 367-374.	13.5	182
44	Genetic Heterogeneity in Familial Acute Myelogenous Leukemia: Evidence for a Second Locus at Chromosome 16q21-23.2. American Journal of Human Genetics, 1997, 61, 873-881.	2.6	42
45	Dynamic mutation: possible mechanisms and significance in human disease. Trends in Biochemical Sciences, 1997, 22, 432-436.	3.7	92
46	Repeat offenders: Simple repeat sequences and complex genetic problems. Human Mutation, 1996, 8, 1-7.	1.1	24
47	The molecular basis of fragile sites in human chromosomes. Current Opinion in Genetics and Development, 1995, 5, 323-327.	1.5	96
48	Physical linkage of the fragile site FRA11B and a Jacobsen Syndrome chromosome deletion breakpoint in 11q23. 3. Human Molecular Genetics, 1994, 3, 2123-2130.	1.4	95
49	DNA Repeats A Treasury of Human Variation. New England Journal of Medicine, 1994, 331, 191-193.	13.9	30
50	Haplotype analysis at the FRAXA locus in the Japanese population. American Journal of Medical Genetics Part A, 1994, 51, 412-416.	2.4	36
51	Simple repeat DNA is not replicated simply. Nature Genetics, 1994, 6, 114-116.	9.4	318
52	Fragile X syndrome: The most common cause of familial intellectual handicap. Medical Journal of Australia, 1993, 158, 482-485.	0.8	9
53	Dynamic mutations: A new class of mutations causing human disease. Cell, 1992, 70, 709-712.	13.5	334
54	Heritable unstable DNA sequences. Nature Genetics, 1992, 1, 7-9.	9.4	125

#	Article	IF	Citations
55	Fragile X syndrome: The molecular picture comes into focus. Trends in Genetics, 1992, 8, 249-255.	2.9	28
56	Prenatal diagnosis and successful intrauterine treatment of a female fetus with 21â€hydroxylase deficiency. Medical Journal of Australia, 1992, 156, 132-135.	0.8	22
57	Human glandular kallikrein genes: Genetic and physical mapping of the KLK1 locus using a highly polymorphic microsatellite PCR marker. Genomics, 1991, 11, 77-82.	1.3	31
58	Human chromosome 16 physical map: Mapping of somatic cell hybrids using multiplex PCR deletion analysis of sequence tagged sites. Genomics, 1991, 10, 1047-1052.	1.3	9
59	Prenatal Diagnosis of Fragile X Syndrome by Direct Detection of the Unstable DNA Sequence. New England Journal of Medicine, 1991, 325, 1720-1722.	13.9	99
60	Human prostate specific antigen (PSA) gene: structure and linkage to the kallikrein-like gene, hGK-1. Nucleic Acids Research, 1989, 17, 2137-2137.	6.5	27
61	Kallikreins, kinins and growth factor biosynthesis. Trends in Biochemical Sciences, 1988, 13, 169-172.	3.7	41
62	Sequence of the mouse glandular kallikrein gene, mGK-5. Nucleic Acids Research, 1987, 15, 10052-10052.	6.5	8
63	$\hat{l}\pm$ -Inhibin Gene Expression Occurs in the Ovine Adrenal Cortex, and is Regulated by Adrenocorticotropin. Molecular Endocrinology, 1987, 1, 699-706.	3.7	79
64	Mouse glandular kallikrein genes: identification and characterization of the genes encoding the epidermal growth factor binding proteins. Biochemistry, 1987, 26, 6750-6756.	1.2	71
65	Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionein-IIA gene. Nature, 1984, 308, 513-519.	13.7	1,003
66	Structural and functional analysis of the human metallothionein-IA gene: Differential induction by metal ions and glucocorticoids. Cell, 1984, 37, 263-272.	13.5	326
67	Structure of mouse kallikrein gene family suggests a role in specific processing of biologically active peptides. Nature, 1983, 303, 300-307.	13.7	318
68	Human metallothionein genes: molecular cloning and sequence analysis of the mRNA. Nucleic Acids Research, 1982, 10, 3165-3173.	6.5	108
69	Human metallothionein genes—primary structure of the metallothionein-II gene and a related processed gene. Nature, 1982, 299, 797-802.	13.7	496
70	Molecular cloning and sequence analysis of adult chicken \hat{l}^2 globin cDNA. Nucleic Acids Research, 1979, 7, 1137-1146.	6.5	99