
Tim Clough

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5257134/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitrous oxide responses to long-term phosphorus application on pasture soil. New Zealand Journal of Agricultural Research, 2023, 66, 171-188.	0.9	3
2	Impacts of pasture species and ruminant urine on N ₂ O emissions and nitrogen transforming microbial communities in soil mesocosms. New Zealand Journal of Agricultural Research, 2022, 65, 42-62.	0.9	6
3	Net ecosystem carbon exchange for Bermuda grass growing in mesocosms as affected by irrigation frequency. Pedosphere, 2022, 32, 393-401.	2.1	5
4	Rice root Fe plaque enhances oxidation of microbially available organic carbon via Fe(III) reduction-coupled microbial respiration. Soil Biology and Biochemistry, 2022, 167, 108568.	4.2	7
5	Wetting and drainage cycles in two New Zealand soil types: Effects on relative gas diffusivity and N2O emissions. Geoderma Regional, 2022, , e00504.	0.9	0
6	In situ nitrous oxide and dinitrogen fluxes from a grazed pasture soil following cow urine application at two nitrogen rates. Science of the Total Environment, 2022, 838, 156473.	3.9	6
7	Effect of aggregate size distribution on soil moisture, soil-gas diffusivity, and N2O emissions from a pasture soil. Geoderma, 2021, 383, 114737.	2.3	17
8	A review of indirect N ₂ O emission factors from artificial agricultural waters. Environmental Research Letters, 2021, 16, 043005.	2.2	24
9	Gross N transformations vary with soil moisture and time following urea deposition to a pasture soil. Geoderma, 2021, 386, 114904.	2.3	15
10	Emissions of nitrous oxide, dinitrogen and carbon dioxide from three soils amended with carbon substrates under varying soil matric potentials. European Journal of Soil Science, 2021, 72, 2261-2275.	1.8	15
11	Irrigation Scheduling with Soil Gas Diffusivity as a Decision Tool to Mitigate N2O Emissions from a Urine-Affected Pasture. Agriculture (Switzerland), 2021, 11, 443.	1.4	3
12	Competition and community succession link N transformation and greenhouse gas emissions in urine patches. Science of the Total Environment, 2021, 779, 146318.	3.9	6
13	Temperature alters dicyandiamide (DCD) efficacy for multiple reactive nitrogen species in urea-amended soils: Experiments and modeling. Soil Biology and Biochemistry, 2021, 160, 108341.	4.2	9
14	Recent advances in grazed pasture-based dairy science. New Zealand Journal of Agricultural Research, 2021, 64, 1-2.	0.9	0
15	Identification and verification of key functional groups of biochar influencing soil N2O emission. Biology and Fertility of Soils, 2021, 57, 447-456.	2.3	14
16	Urea treatment decouples intrinsic pH control over N2O emissions in soils. Soil Biology and Biochemistry, 2021, 163, 108461.	4.2	5
17	Ruminant urine patch nitrification and N ₂ O flux: effects of urine aucubin rate in a laboratory trial. New Zealand Journal of Agricultural Research, 2020, 63, 65-72.	0.9	6
18	Nitrous Oxide Dynamics in Agricultural Peat Soil in Response to Availability of Nitrate, Nitrite, and Iron Sulfides. Geomicrobiology Journal, 2020, 37, 76-85.	1.0	10

#	Article	IF	CITATIONS
19	Efficacy of aucubin as a nitrification inhibitor assessed in two Canterbury field trials. New Zealand Journal of Agricultural Research, 2020, 63, 73-86.	0.9	7
20	Can ruminant urine-N rate and plants affect nitrate leaching and its isotopic composition?. New Zealand Journal of Agricultural Research, 2020, 63, 87-105.	0.9	1
21	Gasâ€Diffusivity based characterization of aggregated agricultural soils. Soil Science Society of America Journal, 2020, 84, 387-398.	1.2	11
22	Soil type, bulk density and drainage effects on relative gas diffusivity and N2O emissions. Soil Research, 2020, 58, 726.	0.6	9
23	Co-application of a biochar and an electric potential accelerates soil nitrate removal while decreasing N2O emission. Soil Biology and Biochemistry, 2020, 149, 107946.	4.2	12
24	Global Research Alliance N ₂ O chamber methodology guidelines: Recommendations for air sample collection, storage, and analysis. Journal of Environmental Quality, 2020, 49, 1110-1125.	1.0	8
25	Global Research Alliance N ₂ O chamber methodology guidelines: Introduction, with health and safety considerations. Journal of Environmental Quality, 2020, 49, 1073-1080.	1.0	13
26	Nitrous oxide emissions from ruminant urine: science and mitigation for intensively managed perennial pastures. Current Opinion in Environmental Sustainability, 2020, 47, 21-27.	3.1	14
27	Application methods of tracers for N ₂ O source determination lead to inhomogeneous distribution in field plots. Analytical Science Advances, 2020, 1, 221-232.	1.2	2
28	Global Research Alliance N ₂ O chamber methodology guidelines: Design considerations. Journal of Environmental Quality, 2020, 49, 1081-1091.	1.0	27
29	Nitrite accumulation and nitrogen gas production increase with decreasing temperature in urea-amended soils: Experiments and modeling. Soil Biology and Biochemistry, 2020, 142, 107727.	4.2	24
30	Soilâ€gas diffusivity and soilâ€moisture effects on N ₂ 0 emissions from repacked pasture soils. Soil Science Society of America Journal, 2020, 84, 371-386.	1.2	6
31	Measuring denitrification and the N2O:(N2O + N2) emission ratio from terrestrial soils. Current Opinion in Environmental Sustainability, 2020, 47, 61-71.	3.1	31
32	Role of plants in reducing nitrogen losses. New Zealand Journal of Agricultural Research, 2020, 63, 1-2.	0.9	1
33	Nitrate leaching losses are lower from ryegrass/white clover forages containing plantain than from ryegrass/white clover forages under different irrigation. New Zealand Journal of Agricultural Research, 2019, 62, 150-172.	0.9	41
34	Tillage, compaction and wetting effects on NO3, N2O and N2 losses. Soil Research, 2019, 57, 670.	0.6	16
35	Soilâ€Gas Diffusivity and Soilâ€Moisture effects on N 2 O Emissions from Intact Pasture Soils. Soil Science Society of America Journal, 2019, 83, 1032-1043.	1.2	18
36	Rice root Fe plaque enhances paddy soil N2O emissions via Fe(II) oxidation-coupled denitrification. Soil Biology and Biochemistry, 2019, 139, 107610.	4.2	18

#	Article	IF	CITATIONS
37	Impact of nitrogen compounds on fungal and bacterial contributions to codenitrification in a pasture soil. Scientific Reports, 2019, 9, 13371.	1.6	14
38	Electrodes Donate Electrons for Nitrate Reduction in a Soil Matrix via DNRA and Denitrification. Environmental Science & Technology, 2019, 53, 2002-2012.	4.6	31
39	A hydrochemically guided landscape classification system for modelling spatial variation in multiple water quality indices: Process-attribute mapping. Science of the Total Environment, 2019, 672, 815-833.	3.9	7
40	Density Effects on Soilâ€Water Characteristics, Soilâ€Gas Diffusivity, and Emissions of N ₂ 0 and N ₂ from a Reâ€packed Pasture Soil. Soil Science Society of America Journal, 2019, 83, 118-125.	1.2	22
41	Regulation of N ₂ O emissions from acid organic soil drained for agriculture. Biogeosciences, 2019, 16, 4555-4575.	1.3	12
42	Soil nitrous oxide emissions from grassland: Potential inhibitor effect of hippuric acid. Journal of Plant Nutrition and Soil Science, 2019, 182, 40-47.	1.1	4
43	Effects of denitrification and transport on the isotopic composition of nitrate (δ180, δ15N) in freshwater systems. Science of the Total Environment, 2019, 651, 2228-2234.	3.9	13
44	Explaining the doubling of N ₂ O emissions under elevated <scp>CO</scp> ₂ in the Giessen <scp>FACE</scp> via inâ€field ¹⁵ N tracing. Global Change Biology, 2018, 24, 3897-3910.	4.2	41
45	Potential inhibition of urine patch nitrous oxide emissions by <i>Plantago lanceolata</i> and its metabolite aucubin. New Zealand Journal of Agricultural Research, 2018, 61, 495-503.	0.9	20
46	Fungal and bacterial contributions to codenitrification emissions of N2O and N2 following urea deposition to soil. Nutrient Cycling in Agroecosystems, 2018, 110, 135-149.	1.1	34
47	Nitrous oxide emissions and biogeochemical responses to soil freezing-thawing and drying-wetting. Soil Biology and Biochemistry, 2018, 117, 5-15.	4.2	124
48	Effects of dairy shed effluent dry matter content on ammonia and nitrous oxide emissions from a pasture soil. Journal of Agricultural Science, 2018, 156, 1070-1078.	0.6	6
49	Characterization of Grainâ€Size Distribution, Thermal Conductivity, and Gas Diffusivity in Variably Saturated Binary Sand Mixtures. Vadose Zone Journal, 2018, 17, 1-13.	1.3	4
50	Reducing nitrogen leaching losses in grazed dairy systems using an Italian ryegrassâ€plantainâ€white clover forage mix. Grass and Forage Science, 2018, 73, 878-887.	1.2	21
51	Assessing the Impact of Nonâ€Urea Ruminant Urine Nitrogen Compounds on Urine Patch Nitrous Oxide Emissions. Journal of Environmental Quality, 2018, 47, 812-819.	1.0	11
52	Vertical stratification of redox conditions, denitrification and recharge in shallow groundwater on a volcanic hillslope containing relict organic matter. Science of the Total Environment, 2018, 639, 1205-1219.	3.9	25
53	N2 production via aerobic pathways may play a significant role in nitrogen cycling in upland soils. Soil Biology and Biochemistry, 2017, 108, 36-40.	4.2	8
54	Nitrification gene ratio and free ammonia explain nitrite and nitrous oxide production in urea-amended soils. Soil Biology and Biochemistry, 2017, 111, 143-153.	4.2	76

TIM CLOUGH

#	Article	IF	CITATIONS
55	Potential Environmental Benefits from Blending Biosolids with Other Organic Amendments before Application to Land. Journal of Environmental Quality, 2017, 46, 481-489.	1.0	28
56	Influence of soil moisture on codenitrification fluxes from a urea-affected pasture soil. Scientific Reports, 2017, 7, 2185.	1.6	44
57	Determining the nitrous oxide transfer velocity and emission factor of an agricultural drain. New Zealand Journal of Agricultural Research, 2017, 60, 277-286.	0.9	4
58	The potential of L.Âscoparium , K.Ârobusta and P.Âradiata to mitigate N-losses in silvopastural systems. Environmental Pollution, 2017, 225, 12-19.	3.7	15
59	Irrigation of DOC-rich liquid promotes potential denitrification rate and decreases N2O/(N2O+N2) product ratio in a 0–2Âm soil profile. Soil Biology and Biochemistry, 2017, 106, 1-8.	4.2	43
60	Enhancement of subsoil denitrification using an electrode as an electron donor. Soil Biology and Biochemistry, 2017, 115, 511-515.	4.2	13
61	Transformation of Organic Matter and the Emissions of Methane and Ammonia during Storage of Liquid Manure as Affected by Acidification. Journal of Environmental Quality, 2017, 46, 514-521.	1.0	39
62	Response to nitrogen addition reveals metabolic and ecological strategies of soil bacteria. Molecular Ecology, 2017, 26, 5500-5514.	2.0	26
63	Temporal in situ dynamics of N2O reductase activity as affected by nitrogen fertilization and implications for the N2O/(N2OÂ+ÂN2) product ratio and N2O mitigation. Biology and Fertility of Soils, 2017, 53, 723-727.	2.3	29
64	15N recoveries from ruminant urine patches on three forage types. Plant and Soil, 2017, 417, 453-465.	1.8	7
65	Perturbation-free measurement of in situ di-nitrogen emissions from denitrification in nitrate-rich aquatic ecosystems. Water Research, 2017, 109, 94-101.	5.3	7
66	Nitrous Oxide Fluxes and Soil Oxygen Dynamics of Soil Treated with Cow Urine. Soil Science Society of America Journal, 2017, 81, 289-298.	1.2	38
67	Nitrous Oxide Fluxes, Soil Oxygen, and Denitrification Potential of Urine―and Nonâ€Urineâ€Treated Soil under Different Irrigation Frequencies. Journal of Environmental Quality, 2016, 45, 1169-1177.	1.0	41
68	Long-term elevation of temperature affects organic N turnover and associated N ₂ O emissions in a permanent grassland soil. Soil, 2016, 2, 601-614.	2.2	18
69	Potential for forage diet manipulation in New Zealand pasture ecosystems to mitigate ruminant urine derived N ₂ 0 emissions: a review. New Zealand Journal of Agricultural Research, 2016, 59, 301-317.	0.9	39
70	Phylogenetic and functional potential links pH and N2O emissions in pasture soils. Scientific Reports, 2016, 6, 35990.	1.6	67
71	Soil Gas Diffusivity Controls N ₂ O and N ₂ Emissions and their Ratio. Soil Science Society of America Journal, 2016, 80, 529-540.	1.2	76
72	Plant N uptake in the periphery of a bovine urine patch: determining the â€~effective area'. New Zealand Journal of Agricultural Research, 2016, 59, 122-140.	0.9	15

#	Article	IF	CITATIONS
73	Influence of copper on expression of <i>nirS</i> , <i> norB</i> and <i>nosZ</i> and the transcription and activity of <scp>NIR</scp> , <scp> NOR</scp> and N ₂ <scp>OR</scp> in the denitrifying soil bacteria <i>Pseudomonas stutzeri</i> . Microbial Biotechnology, 2016, 9, 381-388.	2.0	55
74	Effects of forage type and gibberellic acid on nitrate leaching losses. Soil Use and Management, 2016, 32, 565-572.	2.6	22
75	Effect of Pine Waste and Pine Biochar on Nitrogen Mobility in Biosolids. Journal of Environmental Quality, 2016, 45, 360-367.	1.0	20
76	Spatial and temporal variations in nitrogen export from a New Zealand pastoral catchment revealed by stream water nitrate isotopic composition. Water Resources Research, 2016, 52, 2840-2854.	1.7	22
77	The effect of lignite on nitrogen mobility in a low-fertility soil amended with biosolids and urea. Science of the Total Environment, 2016, 543, 601-608.	3.9	31
78	High-Resolution Denitrification Kinetics in Pasture Soils Link N2O Emissions to pH, and Denitrification to C Mineralization. PLoS ONE, 2016, 11, e0151713.	1.1	62
79	Confirmation of co-denitrification in grazed grassland. Scientific Reports, 2015, 5, 17361.	1.6	59
80	Research and Application of Biochar in New Zealand. SSSA Special Publication Series, 2015, , 423-443.	0.2	2
81	Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production. Scientific Reports, 2015, 5, 12153.	1.6	125
82	Nitrous oxide and methane emissions from cryptogamic covers. Global Change Biology, 2015, 21, 3889-3900.	4.2	94
83	Nitrous oxide emissions from pastures during wet and cold seasons. Grassland Science, 2015, 61, 61-74.	0.6	13
84	Soil aeration affects the degradation rate of the nitrification inhibitor dicyandiamide. Soil Research, 2015, 53, 137.	0.6	17
85	Fertiliser and seasonal urine effects on N ₂ O emissions from the urine-fertiliser interface of a grazed pasture. New Zealand Journal of Agricultural Research, 2015, 58, 311-324.	0.9	17
86	Urine patch and fertiliser N interaction: Effects of fertiliser rate and season of urine application on nitrate leaching and pasture N uptake. Agriculture, Ecosystems and Environment, 2015, 203, 19-28.	2.5	23
87	Evaluation of the stable isotope signatures of nitrate to detect denitrification in a shallow groundwater system in New Zealand. Agriculture, Ecosystems and Environment, 2015, 202, 188-197.	2.5	41
88	Denitrification in the shallow groundwater system of a lowland catchment: A laboratory study. Catena, 2015, 131, 109-118.	2.2	4
89	Compaction influences N2O and N2 emissions from 15N-labeled synthetic urine in wet soils during successive saturation/drainage cycles. Soil Biology and Biochemistry, 2015, 88, 178-188.	4.2	35
90	Increasing soil aeration reduces mitigation efficacy of dicyandiamide when targeted at ruminant urine-derived N2O emissions. New Zealand Journal of Agricultural Research, 2015, 58, 441-453.	0.9	5

#	Article	IF	CITATIONS
91	Ammonia volatilisation is not the dominant factor in determining the soil nitrate isotopic composition of pasture systems. Agriculture, Ecosystems and Environment, 2015, 199, 290-300.	2.5	19
92	Soil Bulk Density and Moisture Content Influence Relative Gas Diffusivity and the Reduction of Nitrogenâ€15 Nitrous Oxide. Vadose Zone Journal, 2014, 13, 1-8.	1.3	25
93	Nitric and nitrous oxide fluxes following bovine urine deposition to summer-grazed pasture. New Zealand Journal of Agricultural Research, 2014, 57, 136-147.	0.9	7
94	Advances in understanding nitrogen flows and transformations: gaps and research pathways. Journal of Agricultural Science, 2014, 152, 34-44.	0.6	51
95	Reply to Elberling etÂal.'s (2013) comments on "Abiotic processes dominate CO2 fluxes in Antarctic soils―(Soil Biol. Biochem. 53, 99–111). Soil Biology and Biochemistry, 2014, 75, 312-313.	4.2	0
96	Biochar does not affect soil N-transformations or microbial community structure under ruminant urine patches but does alter relative proportions of nitrogen cycling bacteria. Agriculture, Ecosystems and Environment, 2014, 191, 63-72.	2.5	72
97	Flooding-induced N2O emission bursts controlled by pH and nitrate in agricultural soils. Soil Biology and Biochemistry, 2014, 69, 17-24.	4.2	52
98	Sources of N2O–N following simulated animal treading of ungrazed pastures. New Zealand Journal of Agricultural Research, 2014, 57, 202-215.	0.9	5
99	Ammonia oxidising populations and relationships with N ₂ 0 emissions in three New Zealand soils. New Zealand Journal of Agricultural Research, 2014, 57, 228-243.	0.9	10
100	Isotopes and Trace Elements as Natal Origin Markers of Helicoverpa armigera – An Experimental Model for Biosecurity Pests. PLoS ONE, 2014, 9, e92384.	1.1	35
101	Impact of short-interval, repeat application of dicyandiamide on soil N transformation in urine patches. Agriculture, Ecosystems and Environment, 2013, 167, 60-70.	2.5	36
102	Influence of soil bulk density and matric potential on microbial dynamics, inorganic N transformations, N2O and N2 fluxes following urea deposition. Soil Biology and Biochemistry, 2013, 65, 1-11.	4.2	41
103	Biogeochemistry and community ecology in a spring-fed urban river following a major earthquake. Environmental Pollution, 2013, 182, 190-200.	3.7	16
104	Denitrification in vadose zone material amended with dissolved organic matter from topsoil and subsoil. Soil Biology and Biochemistry, 2013, 61, 96-104.	4.2	55
105	Using stable isotopes to follow excreta N dynamics and N2O emissions in animal production systems. Animal, 2013, 7, 418-426.	1.3	7
106	Effect of nitrogen and waterlogging on denitrifier gene abundance, community structure and activity in the rhizosphere of wheat. FEMS Microbiology Ecology, 2013, 83, 568-584.	1.3	81
107	Using near-continuous measurements of N ₂ O emission from urine-affected soil to guide manual gas sampling regimes. New Zealand Journal of Agricultural Research, 2013, 56, 60-76.	0.9	51
108	A Review of Biochar and Soil Nitrogen Dynamics. Agronomy, 2013, 3, 275-293.	1.3	663

TIM CLOUGH

#	Article	IF	CITATIONS
109	Changes in Relative Gas Diffusivity Explain Soil Nitrous Oxide Flux Dynamics. Soil Science Society of America Journal, 2013, 77, 1496-1505.	1.2	114
110	Nitrous Oxide Emissions from In Situ Deposition of ¹⁵ N-Labeled Ryegrass Litter in a Pasture Soil. Journal of Environmental Quality, 2013, 42, 323-331.	1.0	9
111	The Impact of Relict Organic Materials on the Denitrification Capacity in the Unsaturated-Saturated Zone Continuum of Three Volcanic Profiles. Journal of Environmental Quality, 2013, 42, 145-154.	1.0	17
112	Influence of photosynthetically active radiation on diurnal N ₂ O emissions under ruminant urine patches. New Zealand Journal of Agricultural Research, 2012, 55, 319-331.	0.9	11
113	Intensive Cattle Grazing Affects Pasture Litter-Fall: An Unrecognized Nitrous Oxide Source. Journal of Environmental Quality, 2012, 41, 444-448.	1.0	13
114	Effect of soil moisture and bovine urine on microbial stress. Pedobiologia, 2012, 55, 211-218.	0.5	19
115	A wood based low-temperature biochar captures NH3-N generated from ruminant urine-N, retaining its bioavailability. Plant and Soil, 2012, 353, 73-84.	1.8	136
116	Abiotic processes dominate CO2 fluxes in Antarctic soils. Soil Biology and Biochemistry, 2012, 53, 99-111.	4.2	61
117	Biochar adsorbed ammonia is bioavailable. Plant and Soil, 2012, 350, 57-69.	1.8	371
118	Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia, 2011, 54, 309-320.	0.5	585
119	Nitrous Oxide Dynamics in a Braided River System, New Zealand. Journal of Environmental Quality, 2011, 40, 1532-1541.	1.0	29
120	Biochar Incorporation into Pasture Soil Suppresses in situ Nitrous Oxide Emissions from Ruminant Urine Patches. Journal of Environmental Quality, 2011, 40, 468-476.	1.0	233
121	Effects of bovine urine, plants and temperature on N2O and CO2 emissions from a sub-tropical soil. Plant and Soil, 2011, 345, 171-186.	1.8	37
122	Carbon Cycling in Floodplain Ecosystems: Out-Gassing and Photosynthesis Transmit Soil δ13C Gradient Through Stream Food Webs. Ecosystems, 2011, 14, 583-597.	1.6	16
123	Influence of soil pH on NO _{<i>x</i>} and N ₂ O emissions from bovine urine applied to soil columns. New Zealand Journal of Agricultural Research, 2011, 54, 285-301.	0.9	29
124	Unweathered Wood Biochar Impact on Nitrous Oxide Emissions from a Bovineâ€Urineâ€Amended Pasture Soil. Soil Science Society of America Journal, 2010, 74, 852-860.	1.2	228
125	Biochar and the Nitrogen Cycle: Introduction. Journal of Environmental Quality, 2010, 39, 1218-1223.	1.0	346
126	Soil properties and presence of plants affect the temperature sensitivity of carbon dioxide production by soils. Plant and Soil, 2010, 337, 375-387.	1.8	15

#	Article	IF	CITATIONS
127	Ten years of elevated atmospheric carbon dioxide alters soil nitrogen transformations in a sheepâ€grazed pasture. Global Change Biology, 2010, 16, 2530-2542.	4.2	139
128	Soil microbial respiration responses to changing temperature and substrate availability in fertile grassland. Soil Research, 2010, 48, 395.	0.6	8
129	Impact of bovine urine deposition on soil microbial activity, biomass, and community structure. Applied Soil Ecology, 2010, 44, 89-100.	2.1	38
130	Effect of elevated CO2 on soil N dynamics in a temperate grassland soil. Soil Biology and Biochemistry, 2009, 41, 1996-2001.	4.2	81
131	The mitigation potential of hippuric acid on N2O emissions from urine patches: An in situ determination of its effect. Soil Biology and Biochemistry, 2009, 41, 2222-2229.	4.2	51
132	Hippuric acid and benzoic acid inhibition of urine derived N ₂ O emissions from soil. Global Change Biology, 2009, 15, 2067-2077.	4.2	38
133	Short-term consequences of spatial heterogeneity in soil nitrogen concentrations caused by urine patches of different sizes. Applied Soil Ecology, 2009, 42, 271-278.	2.1	29
134	Regulation of soil surface respiration in a grazed pasture in New Zealand. Agricultural and Forest Meteorology, 2009, 149, 205-213.	1.9	20
135	Dissolved Organic Nitrogen: An Overlooked Pathway of Nitrogen Loss from Agricultural Systems?. Journal of Environmental Quality, 2009, 38, 393-401.	1.0	191
136	Effects of aggregate size, soil compaction, and bovine urine on N2O emissions from a pasture soil. Soil Biology and Biochemistry, 2008, 40, 924-931.	4.2	60
137	The temperature dependence of dicyandiamide (DCD) degradation in soils: A data synthesis. Soil Biology and Biochemistry, 2008, 40, 1878-1882.	4.2	160
138	Diurnal fluctuations of dissolved nitrous oxide (N2O) concentrations and estimates of N2O emissions from a spring-fed river: implications for IPCC methodology. Global Change Biology, 2007, 13, 1016-1027.	4.2	89
139	Dynamics of nitrous oxide in groundwater at the aquatic?terrestrial interface. Global Change Biology, 2007, 13, 1528-1537.	4.2	31
140	Accounting for the utilization of a N2O mitigation tool in the IPCC inventory methodology for agricultural soils. Nutrient Cycling in Agroecosystems, 2007, 78, 1-14.	1.1	44
141	Denitrification capacity in the vadose zone at three sites in the Lake Taupo catchment, New Zealand. Soil Research, 2007, 45, 91.	0.6	21
142	Comparison of measured and EF5-r-derived N2 O fluxes from a spring-fed river. Global Change Biology, 2006, 12, 352-363.	4.2	40
143	Comparison of measured and EF5-r-derived N2 O fluxes from a spring-fed river. Global Change Biology, 2006, 12, 477-488.	4.2	38
144	Diffusion of 15N-labelled N2O into soil columns: a promising method to examine the fate of N2O in subsoils. Soil Biology and Biochemistry, 2006, 38, 1462-1468.	4.2	58

#	Article	IF	CITATIONS
145	A Review of the Movement and Fate of N2O in the Subsoil. Nutrient Cycling in Agroecosystems, 2005, 72, 3-11.	1.1	135
146	Dairy Farm Effluent Effects on Urine Patch Nitrous Oxide and Carbon Dioxide Emissions. Journal of Environmental Quality, 2005, 34, 979-986.	1.0	16
147	Soil microbial respiration responses to repeated urea applications in three grasslands. Soil Research, 2005, 43, 905.	0.6	24
148	Lime and Soil Moisture Effects on Nitrous Oxide Emissions from a Urine Patch. Soil Science Society of America Journal, 2004, 68, 1600-1609.	1.2	99
149	Soil Respiratory Quotient Determined via Barometric Process Separation Combined with Nitrogenâ€15 Labeling. Soil Science Society of America Journal, 2004, 68, 1610-1615.	1.2	40
150	N2O and N2 gas fluxes, soil gas pressures, and ebullition events following irrigation of 15NO3 - -labelled subsoils. Soil Research, 2003, 41, 401.	0.6	15
151	Can liming mitigate N2O fluxes from a urine-amended soil?. Soil Research, 2003, 41, 439.	0.6	51
152	Emission of nitrogen oxides and ammonia from varying rates of applied synthetic urine and correlations with soil chemistry. Soil Research, 2003, 41, 421.	0.6	48
153	Real-Time, High-Resolution Quantitative Measurement of Multiple Soil Gas Emissions. Journal of Environmental Quality, 2002, 31, 515.	1.0	4
154	Transformations of inorganic-N in soil leachate under differing storage conditions. Soil Biology and Biochemistry, 2001, 33, 1473-1480.	4.2	43
155	Resolution of the 15N balance enigma?. Soil Research, 2001, 39, 1419.	0.6	36
156	Entrapment and displacement of nitrous oxide in a drained pasture soil. Nutrient Cycling in Agroecosystems, 2000, 57, 191-193.	1.1	13
157	A comparison of soil and environmental quality under organic and conventional farming systems in New Zealand. New Zealand Journal of Agricultural Research, 2000, 43, 443-466.	0.9	59
158	Fate of 15N labelled urine on four soil types. Plant and Soil, 1998, 199, 195-203.	1.8	95
159	Relationships between soil thermal units, nitrogen mineralization and dry matter production in pastures. Soil Use and Management, 1998, 14, 65-69.	2.6	11
160	Fate of urine nitrogen on mineral and peat soils in New Zealand. Plant and Soil, 1996, 178, 141-152.	1.8	64
161	Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production. , 0, .		1