
Michael N G James

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5257106/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure of the calcium regulatory muscle protein troponin-C at 2.8 Ã resolution. Nature, 1985, 313, 653-659.	13.7	666
2	Molecular structure of the acyl-enzyme intermediate in β-lactam hydrolysis at 1.7 à resolution. Nature, 1992, 359, 700-705.	13.7	614
3	Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Nature, 1994, 369, 72-76.	13.7	323
4	Molecular structure of an aspartic proteinase zymogen, porcine pepsinogen, at 1.8 Ã resolution. Nature, 1986, 319, 33-38.	13.7	314
5	Structure of Shiga Toxin Type 2 (Stx2) from Escherichia coli O157:H7. Journal of Biological Chemistry, 2004, 279, 27511-27517.	1.6	252
6	Crystal Structure of Human β-Hexosaminidase B: Understanding the Molecular Basis of Sandhoff and Tay–Sachs Disease. Journal of Molecular Biology, 2003, 327, 1093-1109.	2.0	209
7	The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature, 2013, 501, 102-106.	13.7	191
8	Crystallographic Structure of Human β-Hexosaminidase A: Interpretation of Tay-Sachs Mutations and Loss of GM2 Ganglioside Hydrolysis. Journal of Molecular Biology, 2006, 359, 913-929.	2.0	169
9	The POM Monoclonals: A Comprehensive Set of Antibodies to Non-Overlapping Prion Protein Epitopes. PLoS ONE, 2008, 3, e3872.	1.1	162
10	Tertiary structural differences between microbial serine proteases and pancreatic serine enzymes. Nature, 1975, 257, 758-763.	13.7	138
11	A critical assessment of comparative molecular modeling of tertiary structures of proteins. Proteins: Structure, Function and Bioinformatics, 1995, 23, 301-317.	1.5	138
12	Structural and kinetic characterization of a \hat{I}^2 -lactamase-inhibitor protein. Nature, 1994, 368, 657-660.	13.7	128
13	X-ray crystallography of the binding of the bacterial cell wall trisaccharide NAM-NAG-NAM to lysozyme. Nature, 1979, 282, 875-878.	13.7	125
14	Mechanism of acid protease catalysis based on the crystal structure of penicillopepsin. Nature, 1977, 267, 808-813.	13.7	122
15	Carboxyl–carboxylate interactions in proteins. Nature, 1982, 295, 79-80.	13.7	106
16	The Crystal and Molecular Structures of a Cathepsin K:Chondroitin Sulfate Complex. Journal of Molecular Biology, 2008, 383, 78-91.	2.0	95
17	Crystal Structure of Sulfide:Quinone Oxidoreductase from Acidithiobacillus ferrooxidans: Insights into Sulfidotrophic Respiration and Detoxification. Journal of Molecular Biology, 2010, 398, 292-305.	2.0	84
18	Two trifluoperazine-binding sites on calmodulin predicted from comparative molecular modeling with troponin-C. Proteins: Structure, Function and Bioinformatics, 1988, 3, 1-17	1.5	80

MICHAEL N G JAMES

#	Article	IF	CITATIONS
19	Comparative molecular model building of two serine proteinases from cytotoxic T lymphocytes. Proteins: Structure, Function and Bioinformatics, 1988, 4, 190-204.	1.5	78
20	Structural Basis of Prion Inhibition by Phenothiazine Compounds. Structure, 2014, 22, 291-303.	1.6	63
21	Model for the interaction of amphiphilic helices with troponin C and calmodulin. Proteins: Structure, Function and Bioinformatics, 1990, 7, 234-248.	1.5	58
22	Plant Protein Proteinase Inhibitors: Structure and Mechanism of Inhibition. Current Protein and Peptide Science, 2011, 12, 341-347.	0.7	54
23	Comparison of the predicted model of $\hat{l}\pm$ -lytic protease with the X-ray structure. Nature, 1979, 279, 165-168.	13.7	48
24	Insights into mucopolysaccharidosis I from the structure and action of α-L-iduronidase. Nature Chemical Biology, 2013, 9, 739-745.	3.9	48
25	Crystal Structure of β-Hexosaminidase B in Complex with Pyrimethamine, a Potential Pharmacological Chaperone. Journal of Medicinal Chemistry, 2011, 54, 1421-1429.	2.9	46
26	Macrocyclic Inhibitors of Penicillopepsin. 2. X-ray Crystallographic Analyses of Penicillopepsin Complexed with a P3â^'P1 Macrocyclic Peptidyl Inhibitor and with Its Two Acyclic Analogues. Journal of the American Chemical Society, 1998, 120, 4610-4621.	6.6	44
27	ADP-Binding Site of Escherichia coli Succinyl-CoA Synthetase Revealed by X-ray Crystallography,. Biochemistry, 2000, 39, 17-25.	1.2	43
28	Crystal Structure of ll-Diaminopimelate Aminotransferase from Arabidopsis thaliana: A Recently Discovered Enzyme in the Biosynthesis of l-Lysine by Plants and Chlamydia. Journal of Molecular Biology, 2007, 371, 685-702.	2.0	42
29	Active Site of alpha-Lytic Protease. Enzyme-Substrate Interactions. FEBS Journal, 1981, 120, 289-294.	0.2	40
30	The Ubiquitination of PINK1 Is Restricted to Its Mature 52-kDa Form. Cell Reports, 2017, 20, 30-39.	2.9	40
31	Phosphorylation Status of 72 kDa MMP-2 Determines Its Structure and Activity in Response to Peroxynitrite. PLoS ONE, 2013, 8, e71794.	1.1	35
32	Structure-Activity Analysis of Cathepsin K/Chondroitin 4-Sulfate Interactions. Journal of Biological Chemistry, 2011, 286, 8988-8998.	1.6	33
33	Structure–activity characterization of sulfide:quinone oxidoreductase variants. Journal of Structural Biology, 2012, 178, 319-328.	1.3	32
34	Structural characterization of activation â€~intermediate 2' on the pathway to human gastricsin. Nature Structural Biology, 1997, 4, 1010-1015.	9.7	30
35	Transition of the prion protein from a structured cellular form (PrP ^C) to the infectious scrapie agent (PrP ^{Sc}). Protein Science, 2019, 28, 2055-2063.	3.1	30
36	Crystal Structure and Mutagenesis of a Protein Phosphatase-1:Calcineurin Hybrid Elucidate the Role of the β12-β13 Loop in Inhibitor Binding. Journal of Biological Chemistry, 2004, 279, 43198-43206.	1.6	29

MICHAEL N G JAMES

#	Article	IF	CITATIONS
37	Treatment and prevention strategies for the COVID 19 pandemic: A review of immunotherapeutic approaches for neutralizing SARS-CoV-2. International Journal of Biological Macromolecules, 2021, 186, 490-500.	3.6	28
38	Molecular mechanisms underlying the interaction of protein phosphatase-1c with ASPP proteins. Biochemical Journal, 2013, 449, 649-659.	1.7	27
39	Structural studies on the folded domain of the human prion protein bound to the Fab fragment of the antibody POM1. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 1501-1512.	2.5	26
40	Crystallization of a soluble, catalytically active form ofEscherichia coli leader peptidase. Proteins: Structure, Function and Bioinformatics, 1995, 23, 122-125.	1.5	25
41	The Crystal Structure of Shiga Toxin Type 2 with Bound Disaccharide Guides the Design of a Heterobifunctional Toxin Inhibitor. Journal of Biological Chemistry, 2014, 289, 885-894.	1.6	23
42	Common structural features of the <i>lux</i> F protein and the subunits of bacterial luciferase: Evidence for a (βα) ₈ fold in luciferase. Protein Science, 1994, 3, 1914-1926.	3.1	22
43	The Structures of Thermoplasma volcanium Phosphoribosyl Pyrophosphate Synthetase Bound to Ribose-5-Phosphate and ATP Analogs. Journal of Molecular Biology, 2011, 413, 844-856.	2.0	21
44	Comparative molecular modeling and crystallization of P-30 protein: A novel antitumor protein ofRana pipiens oocytes and early embryos. Proteins: Structure, Function and Bioinformatics, 1992, 14, 392-400.	1.5	20
45	Comparative modeling of the three-dimensional structure of the calmodulin-related TCH2 protein from arabidopsis. , 1997, 27, 144-153.		20
46	Mechanism of Substrate Recognition and PLP-induced Conformational Changes in LL-Diaminopimelate Aminotransferase from Arabidopsis thaliana. Journal of Molecular Biology, 2008, 384, 1314-1329.	2.0	20
47	X-ray structural and molecular dynamical studies of the globular domains of cow, deer, elk and Syrian hamster prion proteins. Journal of Structural Biology, 2015, 192, 37-47.	1.3	19
48	Structure and Function of Picornavirus Proteinases. , 0, , 199-212.		17
49	The mechanism of activation of porcine pepsinogen (reply). Nature, 1986, 322, 664-664.	13.7	15
50	The Structure of ll-Diaminopimelate Aminotransferase from Chlamydia trachomatis: Implications for Its Broad Substrate Specificity. Journal of Molecular Biology, 2011, 411, 649-660.	2.0	14
51	The peptidases from fungi and viruses. Biological Chemistry, 2006, 387, 1023-9.	1.2	10
52	Structural insights for the substrate recognition mechanism of LL-diaminopimelate aminotransferase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 1528-1533.	1.1	10
53	Synthesis of pseudoxazolones and their inhibition of the 3C cysteine proteinases from hepatitis A virus and human rhinovirus-14. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 1351-1359.	1.3	9
54	Crystallization and preliminary X-ray diffraction analysis of prion protein bound to the Fab fragment of the POM1 antibody. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1211-1213.	0.7	9

MICHAEL N G JAMES

#	Article	IF	CITATIONS
55	The crystal structure of an octapeptide repeat of the Prion protein in complex with a Fab fragment of the POM2 antibody. Protein Science, 2013, 22, 893-903.	3.1	8
56	Preliminary X-ray crystallographic analysis of sulfide:quinone oxidoreductase fromAcidithiobacillus ferrooxidans. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 839-842.	0.7	6
57	Structural characterization of POM 6 Fab and mouse prion protein complex identifies key regions for prions conformational conversion. FEBS Journal, 2018, 285, 1701-1714.	2.2	6
58	Deduction of the 3C proteinases' fold. Nature Structural Biology, 1994, 1, 505-506.	9.7	4
59	Expression, purification and preliminary crystallographic analysis ofO-acetylhomoserine sulfhydrylase fromMycobacterium tuberculosis. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 959-963.	0.7	4
60	Calcium Binding to Skeletal Muscle Troponin C and the Regulation of Muscle Contraction. Novartis Foundation Symposium, 1986, 122, 120-144.	1.2	4
61	Pseudoxazolones, a new class of inhibitors for cysteine proteinases: inhibition of hepatitis A virus and human rhinovirus 3C proteinases. Chemical Communications, 2001, , 2740-2741.	2.2	3
62	Expression, purification and preliminary crystallographic analysis ofN-acetylglucosamine-1-phosphate uridylyltransferase fromMycobacterium tuberculosis. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 805-808.	0.7	3
63	Crystallization and preliminary X-ray diffraction studies of two mutants of lactate dehydrogenase fromBacillus stearothermophilus. Proteins: Structure, Function and Bioinformatics, 1992, 13, 158-161.	1.5	2
64	Expression, purification and preliminary crystallographic analysis of Rv3002c, the regulatory subunit of acetolactate synthase (IlvH) from <i>Mycobacterium tuberculosis</i> . Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 933-936.	0.7	2
65	Expression, purification and preliminary crystallographic analysis of Rv2247, the β subunit of acyl-CoA carboxylase (ACCD6) from Mycobacterium tuberculosis. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1637-1640.	0.7	2
66	Regulatory RNA elements. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 493-494.	0.9	0
67	Expression, purification, crystallization and preliminary crystallographic analysis of the phosphoglycerate kinase from <i>Acinetobacter baumannii</i> . Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 790-792.	0.7	0