

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5257070/publications.pdf Version: 2024-02-01

<u> Υιι ΥλΝ</u>

#	Article	IF	CITATIONS
1	A comprehensive analysis on source-specific ecological risk of metal(loid)s in surface sediments of mangrove wetlands in Jiulong River Estuary, China. Catena, 2022, 209, 105817.	5.0	33
2	<scp>ArsZ</scp> from <i>Ensifer adhaerens</i> <scp>ST2</scp> is a novel methylarsenite oxidase. Environmental Microbiology, 2022, 24, 3013-3021.	3.8	6
3	Urbanization drives the succession of antibiotic resistome and microbiome in a river watershed. Chemosphere, 2022, 301, 134707.	8.2	9
4	Bioaccessibility of microplastic-associated heavy metals using an in vitro digestion model and its implications for human health risk assessment. Environmental Science and Pollution Research, 2022, 29, 76983-76991.	5.3	16
5	Incorporating bioaccessibility and source apportionment into human health risk assessment of heavy metals in urban dust of Xiamen, China. Ecotoxicology and Environmental Safety, 2021, 228, 112985.	6.0	38
6	lsotope tracers for lead and strontium sources in the Tieguanyin tea garden soils and tea leaves. Chemosphere, 2020, 246, 125638.	8.2	13
7	Background determination, pollution assessment and source analysis of heavy metals in estuarine sediments from Quanzhou Bay, southeast China. Catena, 2020, 187, 104322.	5.0	45
8	Characteristics and provenance implications of rare earth elements and Sr–Nd isotopes in PM2.5 aerosols and PM2.5 fugitive dusts from an inland city of southeastern China. Atmospheric Environment, 2020, 220, 117069.	4.1	17
9	New insights into toxic effects of arsenate on four Microcystis species under different phosphorus regimes. Environmental Science and Pollution Research, 2020, 27, 44460-44469.	5.3	9
10	Provenance and bioaccessibility of rare earth elements in atmospheric particles in areas impacted by the optoelectronic industry. Environmental Pollution, 2020, 263, 114349.	7.5	7
11	Bacterial community colonization on tire microplastics in typical urban water environments and associated impacting factors. Environmental Pollution, 2020, 265, 114922.	7.5	58
12	The Great Oxidation Event expanded the genetic repertoire of arsenic metabolism and cycling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10414-10421.	7.1	96
13	Bioaccumulation and biotransformation of arsenic in Leptolyngbya boryana. Environmental Science and Pollution Research, 2020, 27, 29993-30000.	5.3	13
14	Reduction of Organoarsenical Herbicides and Antimicrobial Growth Promoters by the Legume Symbiont <i>Sinorhizobium meliloti</i> . Environmental Science & Technology, 2019, 53, 13648-13656.	10.0	17
15	Characteristics and provenances of rare earth elements in the atmospheric particles of a coastal city with large-scale optoelectronic industries. Atmospheric Environment, 2019, 214, 116836.	4.1	11
16	Contamination assessment, source apportionment and health risk assessment of heavy metals in paddy soils of Jiulong River Basin, Southeast China. RSC Advances, 2019, 9, 14736-14744.	3.6	41
17	Distribution and provenance implication of rare earth elements and Sr-Nd isotopes in surface sediments of Jiulong River, Southeast China. Journal of Soils and Sediments, 2019, 19, 1499-1510.	3.0	11
18	Source apportionment of metal elements in PM2.5 in a coastal city in Southeast China: Combined Pb-Sr-Nd isotopes with PMF method. Atmospheric Environment, 2019, 198, 302-312.	4.1	38

Yu Yan

#	Article	IF	CITATIONS
19	Source apportionment of heavy metals in urban road dust in a continental city of eastern China: Using Pb and Sr isotopes combined with multivariate statistical analysis. Atmospheric Environment, 2019, 201, 201-211.	4.1	68
20	Arsenic Methyltransferase is Involved in Arsenosugar Biosynthesis by Providing DMA. Environmental Science & Technology, 2017, 51, 1224-1230.	10.0	34
21	Arsenic biotransformation by a cyanobacterium Nostoc sp. PCC 7120. Environmental Pollution, 2017, 228, 111-117.	7.5	34
22	Ability of Periplasmic Phosphate Binding Proteins from Synechocystis sp. PCC 6803 to Discriminate Phosphate Against Arsenate. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	11
23	Co-expression of Cyanobacterial Genes for Arsenic Methylation and Demethylation in Escherichia coli Offers Insights into Arsenic Resistance. Frontiers in Microbiology, 2017, 8, 60.	3.5	9
24	Arsenic methylation by an arsenite S-adenosylmethionine methyltransferase from Spirulina platensis. Journal of Environmental Sciences, 2016, 49, 162-168.	6.1	34
25	Arsenic Demethylation by a C·As Lyase in Cyanobacterium <i><i>Nostoc</i></i> sp. PCC 7120. Environmental Science & Technology, 2015, 49, 14350-14358.	10.0	55
26	Identification and characterization of the arsenite methyltransferase from a protozoan, Tetrahymena pyriformis. Aquatic Toxicology, 2014, 149, 50-57.	4.0	24