Ado Jorio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5257017/publications.pdf

Version: 2024-02-01

289 papers 42,580 citations

84 h-index 202 g-index

296 all docs

296 docs citations

times ranked

296

36263 citing authors

#	Article	IF	CITATIONS
1	Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical Physics, 2007, 9, 1276-1290.	1.3	3,775
2	Raman spectroscopy of carbon nanotubes. Physics Reports, 2005, 409, 47-99.	10.3	3,709
3	Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Letters, 2011, 11, 3190-3196.	4.5	2,807
4	Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy. Nano Letters, 2010, 10, 751-758.	4. 5	2,784
5	General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Applied Physics Letters, 2006, 88, 163106.	1.5	2,071
6	Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon, 2010, 48, 1592-1597.	5 . 4	1,443
7	Structural (n,m) Determination of Isolated Single-Wall Carbon Nanotubes by Resonant Raman Scattering. Physical Review Letters, 2001, 86, 1118-1121.	2.9	1,405
8	Raman spectroscopy on isolated single wall carbon nanotubes. Carbon, 2002, 40, 2043-2061.	5.4	1,288
9	Characterizing carbon nanotube samples with resonance Raman scattering. New Journal of Physics, 2003, 5, 139-139.	1.2	883
10	Raman spectroscopy of graphene and carbon nanotubes. Advances in Physics, 2011, 60, 413-550.	35.9	797
11	Development of nanotechnologies. Materials Today, 2004, 7, 30-35.	8.3	646
12	Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Physical Review B, 2010, 82, .	1.1	606
13	Influence of the Atomic Structure on the Raman Spectra of Graphite Edges. Physical Review Letters, 2004, 93, 247401.	2.9	594
14	Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 5355-5377.	1.6	571
15	Optical Transition Energies for Carbon Nanotubes from Resonant Raman Spectroscopy: Environment and Temperature Effects. Physical Review Letters, 2004, 93, 147406.	2.9	567
16	Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy. Annual Review of Condensed Matter Physics, 2010, 1, 89-108.	5.2	533
17	Probing Phonon Dispersion Relations of Graphite by Double Resonance Raman Scattering. Physical Review Letters, 2001, 88, 027401.	2.9	494
18	Origin of the Breit-Wigner-Fano lineshape of the tangentialG-band feature of metallic carbon nanotubes. Physical Review B, 2001, 63, .	1.1	484

#	Article	IF	CITATIONS
19	UNUSUAL PROPERTIES AND STRUCTURE OF CARBON NANOTUBES. Annual Review of Materials Research, 2004, 34, 247-278.	4.3	438
20	G-band resonant Raman study of 62 isolated single-wall carbon nanotubes. Physical Review B, 2002, 65,	1.1	430
21	Measuring the degree of stacking order in graphite by Raman spectroscopy. Carbon, 2008, 46, 272-275.	5.4	358
22	Polarized Raman Study of Aligned Multiwalled Carbon Nanotubes. Physical Review Letters, 2000, 84, 1820-1823.	2.9	345
23	Third and Fourth Optical Transitions in Semiconducting Carbon Nanotubes. Physical Review Letters, 2007, 98, 067401.	2.9	274
24	Electron and phonon renormalization near charged defects in carbon nanotubes. Nature Materials, 2008, 7, 878-883.	13.3	263
25	Inhomogeneous optical absorption around theKpoint in graphite and carbon nanotubes. Physical Review B, 2003, 67, .	1.1	257
26	Raman Spectroscopy of Carbon Nanotubes in 1997 and 2007. Journal of Physical Chemistry C, 2007, 111, 17887-17893.	1.5	251
27	Single Nanotube Raman Spectroscopy. Accounts of Chemical Research, 2002, 35, 1070-1078.	7.6	234
28	Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size. Physical Review B, 2007, 76, .	1,1	234
29	Raman Signature of Graphene Superlattices. Nano Letters, 2011, 11, 4527-4534.	4.5	234
30	Double resonance Raman spectroscopy of single-wall carbon nanotubes. New Journal of Physics, 2003, 5, 157-157.	1.2	229
31	New direction in nanotube science. Materials Today, 2004, 7, 30-45.	8.3	225
32	Resonance Raman spectroscopy(n,m)-dependent effects in small-diameter single-wall carbon nanotubes. Physical Review B, 2005, 71, .	1.1	225
33	Polarized Raman Study of Single-Wall Semiconducting Carbon Nanotubes. Physical Review Letters, 2000, 85, 2617-2620.	2.9	221
34	D-band Raman intensity of graphitic materials as a function of laser energy and crystallite size. Chemical Physics Letters, 2006, 427, 117-121.	1.2	219
35	Raman spectroscopy for carbon nanotube applications. Journal of Applied Physics, 2021, 129, .	1.1	212
36	Chirality dependence of exciton effects in single-wall carbon nanotubes: Tight-binding model. Physical Review B, 2007, 75, .	1.1	208

#	Article	IF	CITATIONS
37	Exciton Photophysics of Carbon Nanotubes. Annual Review of Physical Chemistry, 2007, 58, 719-747.	4.8	201
38	Nanowires and nanotubes. Materials Science and Engineering C, 2003, 23, 129-140.	3.8	198
39	Anisotropy of the Raman Spectra of Nanographite Ribbons. Physical Review Letters, 2004, 93, 047403.	2.9	195
40	Measuring disorder in graphene with the G and D bands. Physica Status Solidi (B): Basic Research, 2010, 247, 2980-2982.	0.7	190
41	Observations of the D-band feature in the Raman spectra of carbon nanotubes. Physical Review B, 2001, 64, .	1.1	188
42	Family behavior of the optical transition energies in single-wall carbon nanotubes of smaller diameters. Applied Physics Letters, 2004, 85, 5703-5705.	1.5	185
43	Structural analysis of polycrystalline graphene systems by Raman spectroscopy. Carbon, 2015, 95, 646-652.	5.4	184
44	Group theory analysis of phonons in two-dimensional transition metal dichalcogenides. Physical Review B, 2014, 90, .	1.1	182
45	Linewidth of the Raman features of individual single-wall carbon nanotubes. Physical Review B, 2002, 66, .	1.1	181
46	Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes. Physical Review B, 2008, 77, .	1.1	178
47	Single Nanotube Raman Spectroscopy. ChemInform, 2003, 34, no.	0.1	160
48	Electron-phonon matrix elements in single-wall carbon nanotubes. Physical Review B, 2005, 72, .	1.1	160
49	Group-theory analysis of electrons and phonons in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> -layer graphene systems. Physical Review B, 2009, 79, .	1.1	154
50	Quantifying carbon-nanotube species with resonance Raman scattering. Physical Review B, 2005, 72, .	1.1	153
51	Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite. Physical Review B, 2002, 66, .	1.1	152
52	Photoluminescence intensity of single-wall carbon nanotubes. Carbon, 2006, 44, 873-879.	5.4	151
53	Joint density of electronic states for one isolated single-wall carbon nanotube studied by resonant Raman scattering. Physical Review B, 2001, 63, .	1.1	149
54	Disentangling contributions of point and line defects in the Raman spectra of graphene-related materials. 2D Materials, 2017, 4, 025039.	2.0	146

#	Article	IF	CITATIONS
55	Raman spectroscopy for probing chemically/physically induced phenomena in carbon nanotubes. Nanotechnology, 2003, 14, 1130-1139.	1.3	143
56	Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature, 2021, 590, 405-409.	13.7	139
57	Raman spectroscopy of graphitic foams. Physical Review B, 2005, 71, .	1.1	138
58	Review on the symmetry-related properties of carbon nanotubes. Physics Reports, 2006, 431, 261-302.	10.3	138
59	Synthesis, Electronic Structure, and Raman Scattering of Phosphorus-Doped Single-Wall Carbon Nanotubes. Nano Letters, 2009, 9, 2267-2272.	4.5	134
60	Optical characterization of DNA-wrapped carbon nanotube hybrids. Chemical Physics Letters, 2004, 397, 296-301.	1.2	129
61	Determination of nanotubes properties by Raman spectroscopy. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 2311-2336.	1.6	128
62	Resonance effects on the Raman spectra of graphene superlattices. Physical Review B, 2013, 88, .	1.1	128
63	Polarized resonant Raman study of isolated single-wall carbon nanotubes: Symmetry selection rules, dipolar and multipolar antenna effects. Physical Review B, 2002, 65, .	1.1	124
64	Resonance Raman Spectra of Carbon Nanotubes by Cross-Polarized Light. Physical Review Letters, 2003, 90, 107403.	2.9	124
65	Raman Spectroscopy in Graphene-Based Systems: Prototypes for Nanoscience and Nanometrology. ISRN Nanotechnology, 2012, 2012, 1-16.	1.3	123
66	Origin of the 2450cmâ^1 Raman bands in HOPG, single-wall and double-wall carbon nanotubes. Carbon, 2005, 43, 1049-1054.	5 . 4	120
67	Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes. Physical Review B, 2002, 66, .	1.1	118
68	Chirality-dependent G-band Raman intensity of carbon nanotubes. Physical Review B, 2001, 64, .	1.1	115
69	The Concept of Cutting Lines in Carbon Nanotube Science. Journal of Nanoscience and Nanotechnology, 2003, 3, 431-458.	0.9	115
70	Chemical Vapor Deposition Synthesis of N-, P-, and Si-Doped Single-Walled Carbon Nanotubes. ACS Nano, 2010, 4, 1696-1702.	7.3	113
71	Diameter dependence of the RamanD-band in isolated single-wall carbon nanotubes. Physical Review B, 2001, 64, .	1.1	112
72	Raman Studies of Carbon Nanostructures. Annual Review of Materials Research, 2016, 46, 357-382.	4.3	112

#	Article	IF	CITATIONS
73	Phonon-Assisted Excitonic Recombination Channels Observed in DNA-Wrapped Carbon Nanotubes Using Photoluminescence Spectroscopy. Physical Review Letters, 2005, 94, 127402.	2.9	110
74	Resonance Raman spectroscopy of the radial breathing modes in carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1251-1261.	1.3	110
75	Raman study of ion-induced defects in <i>N</i> -layer graphene. Journal of Physics Condensed Matter, 2010, 22, 334204.	0.7	110
76	Direct Experimental Evidence of Exciton-Phonon Bound States in Carbon Nanotubes. Physical Review Letters, 2005, 95, 247401.	2.9	101
77	Determination of two-dimensional phonon dispersion relation of graphite by Raman spectroscopy. Physical Review B, 2002, 65, .	1.1	99
78	Stokes and anti-Stokes Raman spectra of small-diameter isolated carbon nanotubes. Physical Review B, 2004, 69, .	1.1	98
79	Exciton-photon, exciton-phonon matrix elements, and resonant Raman intensity of single-wall carbon nanotubes. Physical Review B, 2007, 75, .	1.1	92
80	Raman spectroscopy of twisted bilayer graphene. Solid State Communications, 2013, 175-176, 3-12.	0.9	90
81	Competing spring constant versus double resonance effects on the properties of dispersive modes in isolated single-wall carbon nanotubes. Physical Review B, 2003, 67, .	1.1	88
82	Second Harmonic Generation in WSe ₂ . 2D Materials, 2015, 2, 045015.	2.0	88
83	Raman spectroscopy analysis of number of layers in mass-produced graphene flakes. Carbon, 2020, 161, 181-189.	5.4	87
84	Resonance Raman study of linear carbon chains formed by the heat treatment of double-wall carbon nanotubes. Physical Review B, 2006, 73, .	1.1	85
85	Raman scattering study of the phonon dispersion in twisted bilayer graphene. Nano Research, 2013, 6, 269-274.	5.8	85
86	Electronic transition energyEiifor an isolated(n,m)single-wall carbon nanotube obtained by anti-Stokes/Stokes resonant Raman intensity ratio. Physical Review B, 2001, 63, .	1.1	84
87	Spectro-electrochemical studies of single wall carbon nanotubes films. Chemical Physics Letters, 2004, 392, 396-402.	1.2	84
88	Group theory for structural analysis and lattice vibrations in phosphorene systems. Physical Review B, 2015, 91, .	1.1	82
89	Interband optical transitions in left- and right-handed single-wall carbon nanotubes. Physical Review B, 2004, 69, .	1.1	77
90	Highly efficient siRNA delivery system into human and murine cells using single-wall carbon nanotubes. Nanotechnology, 2010, 21, 385101.	1.3	77

#	Article	IF	CITATIONS
91	Anomalous two-peakG′-band Raman effect in one isolated single-wall carbon nanotube. Physical Review B, 2002, 65, .	1.1	76
92	Intensity of the resonance Raman excitation spectra of single-wall carbon nanotubes. Physical Review B, 2005, 71, .	1.1	75
93	Dielectric constant model for environmental effects on the exciton energies of single wall carbon nanotubes. Applied Physics Letters, 2010, 97, .	1.5	75
94	Geometric and electronic structure of carbon nanotube networks:  super'-carbon nanotubes. Nanotechnology, 2006, 17, 617-621.	1.3	74
95	Atomistic simulations of the mechanical properties of  super' carbon nanotubes. Nanotechnology, 2007, 18, 335702.	1.3	72
96	Mechanism of Near-Field Raman Enhancement in One-Dimensional Systems. Physical Review Letters, 2009, 103, 186101.	2.9	71
97	Raman spectroscopy on one isolated carbon nanotube. Physica B: Condensed Matter, 2002, 323, 15-20.	1.3	68
98	Biodiesel compatibility with carbon steel and HDPE parts. Fuel Processing Technology, 2009, 90, 1175-1182.	3.7	68
99	Dispersive Raman spectra observed in graphite and single wall carbon nanotubes. Physica B: Condensed Matter, 2002, 323, 100-106.	1.3	64
100	Characterization of DNA-wrapped carbon nanotubes by resonance Raman and optical absorption spectroscopies. Chemical Physics Letters, 2007, 439, 138-142.	1.2	64
101	Spatial Coherence in Near-Field Raman Scattering. Physical Review Letters, 2014, 113, 186101.	2.9	63
102	Phonon Trigonal Warping Effect in Graphite and Carbon Nanotubes. Physical Review Letters, 2003, 90, 027403.	2.9	62
103	Deformation Induced Semiconductor-Metal Transition in Single Wall Carbon Nanotubes Probed by Electric Force Microscopy. Physical Review Letters, 2008, 100, 256804.	2.9	62
104	Tip-enhanced Raman mapping of local strain in graphene. Nanotechnology, 2015, 26, 175702.	1.3	62
105	One-Dimensional Character of Combination Modes in the Resonance Raman Scattering of Carbon Nanotubes. Physical Review Letters, 2004, 93, 087401.	2.9	61
106	The use of Raman spectroscopy to characterize the carbon materials found in Amazonian anthrosoils. Journal of Raman Spectroscopy, 2013, 44, 283-289.	1.2	59
107	Tuning Localized Surface Plasmon Resonance in Scanning Near-Field Optical Microscopy Probes. ACS Nano, 2015, 9, 6297-6304.	7.3	59
108	Steplike dispersion of the intermediate-frequency Raman modes in semiconducting and metallic carbon nanotubes. Physical Review B, 2005, 72, .	1.1	57

#	Article	IF	Citations
109	Photoexcited electron relaxation processes in single-wall carbon nanotubes. Physical Review B, 2005, 71, .	1.1	55
110	Visualizing the Local Optical Response of Semiconducting Carbon Nanotubes to DNA-Wrapping. Nano Letters, 2008, 8, 2706-2711.	4.5	55
111	Chemical Analysis and Molecular Models for Calcium–Oxygen–Carbon Interactions in Black Carbon Found in Fertile Amazonian Anthrosoils. Environmental Science & Environment	4.6	53
112	Excitons and exciton-phonon coupling in metallic single-walled carbon nanotubes: Resonance Raman spectroscopy. Physical Review B, 2008, 78, .	1.1	52
113	Diameter Dependence of the Dielectric Constant for the Excitonic Transition Energy of Single-Wall Carbon Nanotubes. Physical Review Letters, 2009, 103, 146802.	2.9	52
114	Mechanism of near-field Raman enhancement in two-dimensional systems. Physical Review B, 2012, 85, .	1.1	52
115	Probing the electronic trigonal warping effect in individual single-wall carbon nanotubes using phonon spectra. Chemical Physics Letters, 2002, 354, 62-68.	1.2	51
116	Carbon nanotube population analysis from Raman and photoluminescence intensities. Applied Physics Letters, 2006, 88, 023109.	1.5	51
117	Resonance Raman study of polyynes encapsulated in single-wall carbon nanotubes. Physical Review B, 2007, 76, .	1.1	51
118	Line shape analysis of the Raman spectra from pure and mixed biofuels esters compounds. Fuel, 2014, 115, 118-125.	3.4	51
119	Perspectives on Raman spectroscopy of graphene-based systems: from the perfect two-dimensional surface to charcoal. Physical Chemistry Chemical Physics, 2012, 14, 15246.	1.3	50
120	Mechanical properties of carbon nanotube networks by molecular mechanics and impact molecular dynamics calculations. Physical Review B, 2007, 75, .	1.1	49
121	Modulating the Electronic Properties along Carbon Nanotubes via Tubeâ [^] Substrate Interaction. Nano Letters, 2010, 10, 5043-5048.	4.5	49
122	Single- and double-resonance RamanG-band processes in carbon nanotubes. Physical Review B, 2004, 69,	1.1	48
123	Selection rules for one- and two-photon absorption by excitons in carbon nanotubes. Physical Review B, 2006, 73, .	1.1	48
124	Microscopy and spectroscopy analysis of carbon nanostructures in highly fertile Amazonian anthrosoils. Soil and Tillage Research, 2012, 122, 61-66.	2.6	48
125	Optical absorption of graphite and single-wall carbon nanotubes. Applied Physics A: Materials Science and Processing, 2004, 78, 1099-1105.	1.1	47
126	Effect of quantized electronic states on the dispersive Raman features in individual single-wall carbon nanotubes. Physical Review B, 2001, 65, .	1.1	46

#	Article	IF	CITATIONS
127	The use of a Ga ⁺ focused ion beam to modify graphene for device applications. Nanotechnology, 2012, 23, 255305.	1.3	46
128	Optical-Phonon Resonances with Saddle-Point Excitons in Twisted-Bilayer Graphene. Nano Letters, 2014, 14, 5687-5692.	4.5	45
129	Multi-walled carbon nanotubes functionalized with recombinant Dengue virus 3 envelope proteins induce significant and specific immune responses in mice. Journal of Nanobiotechnology, 2017, 15, 26.	4.2	45
130	Is Tsallis Thermodynamics Nonextensive?. Physical Review Letters, 2001, 88, 020601.	2.9	44
131	Length characterization of DNA-wrapped carbon nanotubes using Raman spectroscopy. Applied Physics Letters, 2007, 90, 131109.	1.5	42
132	The role of environmental effects on the optical transition energies and radial breathing mode frequency of single wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2008, 245, 2201-2204.	0.7	41
133	Carbon Nanotube Photophysics. MRS Bulletin, 2004, 29, 276-280.	1.7	37
134	Micro-Raman investigation of aligned single-wall carbon nanotubes. Physical Review B, 2001, 63, .	1.1	36
135	The Kataura plot over broad energy and diameter ranges. Physica Status Solidi (B): Basic Research, 2006, 243, 3117-3121.	0.7	36
136	Exciton decay dynamics in individual carbon nanotubes at room temperature. Applied Physics Letters, 2008, 92, 153116.	1.5	36
137	Stokes–anti-Stokes correlations in diamond. Optics Letters, 2015, 40, 2393.	1.7	36
138	Stokes–anti-Stokes correlation in the inelastic scattering of light by matter and generalization of the Bose-Einstein population function. Physical Review B, 2016, 93, .	1.1	36
139	Raman studies on 0.4 nm diameter single wall carbon nanotubes. Chemical Physics Letters, 2002, 351, 27-34.	1.2	35
140	Plasmonâ€Tunable Tip Pyramids: Monopole Nanoantennas for Nearâ€Field Scanning Optical Microscopy. Advanced Optical Materials, 2018, 6, 1800528.	3.6	35
141	Science and Applications of Single-Nanotube Raman Spectroscopy. Journal of Nanoscience and Nanotechnology, 2003, 3, 19-37.	0.9	34
142	Raman spectroscopy study of Ar ⁺ bombardment in highly oriented pyrolytic graphite. Physica Status Solidi (B): Basic Research, 2009, 246, 2689-2692.	0.7	34
143	Symmetry-derived selection rules for plasmon-enhanced Raman scattering. Physical Review B, 2017, 95, .	1.1	33
144	Raman characterization of electronic transition energies of metallic single-wall carbon nanotubes. Physical Review B, 2006, 74, .	1.1	32

#	Article	IF	Citations
145	Inner- and outer-wall sorting of double-walled carbon nanotubes. Nature Nanotechnology, 2017, 12, 1176-1182.	15.6	32
146	Raman resonance window of single-wall carbon nanotubes. Physical Review B, 2006, 74, .	1.1	31
147	Theory of Spatial Coherence in Near-Field Raman Scattering. Physical Review X, 2014, 4, .	2.8	31
148	Phonon-assisted exciton relaxation dynamics for a (6,5)-enriched DNA-wrapped single-walled carbon nanotube sample. Physical Review B, 2005, 72, .	1.1	30
149	Probing Spatial Phonon Correlation Length in Post-Transition Metal Monochalcogenide GaS Using Tip-Enhanced Raman Spectroscopy. Nano Letters, 2019, 19, 7357-7364.	4.5	30
150	Temporal Quantum Correlations in Inelastic Light Scattering from Water. Physical Review Letters, 2016, 117, 243603.	2.9	28
151	Applications of Raman spectroscopy in grapheneâ€related materials and the development of parameterized PCA for largeâ€scale data analysis. Journal of Raman Spectroscopy, 2018, 49, 54-65.	1.2	28
152	Resonant Raman spectra of carbon nanotube bundles observed by perpendicularly polarized light. Chemical Physics Letters, 2004, 387, 301-306.	1.2	27
153	Studying 2D materials with advanced Raman spectroscopy: CARS, SRS and TERS. Physical Chemistry Chemical Physics, 2021, 23, 23428-23444.	1.3	26
154	Polarization effects in surface-enhanced resonant Raman scattering of single-wall carbon nanotubes on colloidal silver clusters. Physical Review B, 2001, 63, .	1.1	25
155	The two peaks G′ band in carbon nanotubes. Physica Status Solidi (B): Basic Research, 2008, 245, 2197-2200.	0.7	25
156	Photonic Counterparts of Cooper Pairs. Physical Review Letters, 2017, 119, 193603.	2.9	25
157	The effect of environment on the radial breathing mode of supergrowth single wall carbon nanotubes. Applied Physics Letters, 2009, 95, .	1.5	24
158	Carbon-Nanotube Metrology. Topics in Applied Physics, 2007, , 63-100.	0.4	24
159	Anomalous Nonlinear Optical Response of Graphene Near Phonon Resonances. Nano Letters, 2017, 17, 3447-3451.	4.5	23
160	Optical studies of carbon nanotubes and nanographites. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 88-92.	1.3	22
161	Basal-plane incommensurate phases in hexagonal-close-packed structures. Physical Review B, 1998, 57, 5086-5092.	1.1	21
162	First and Second-Order Resonance Raman Process in Graphite and Single Wall Carbon Nanotubes. Japanese Journal of Applied Physics, 2002, 41, 4878-4882.	0.8	21

#	Article	IF	Citations
163	Boron, nitrogen and phosphorous substitutionally doped singleâ€wall carbon nanotubes studied by resonance Raman spectroscopy. Physica Status Solidi (B): Basic Research, 2009, 246, 2432-2435.	0.7	21
164	Calibrating the single-wall carbon nanotube resonance Raman intensity by high resolution transmission electron microscopy for a spectroscopy-based diameter distribution determination. Applied Physics Letters, 2010, 96, .	1.5	21
165	Nanoscale mapping of carbon oxidation in pyrogenic black carbon from ancient Amazonian anthrosols. Environmental Sciences: Processes and Impacts, 2015, 17, 775-779.	1.7	21
166	Enhanced Mechanical Stability of Gold Nanotips through Carbon Nanocone Encapsulation. Scientific Reports, 2015, 5, 10408.	1.6	21
167	Efficient delivery of DNA into bovine preimplantation embryos by multiwall carbon nanotubes. Scientific Reports, 2016, 6, 33588.	1.6	21
168	Depth dependence of black carbon structure, elemental and microbiological composition in anthropic Amazonian dark soil. Soil and Tillage Research, 2016, 155, 298-307.	2.6	21
169	Optical Nanoantennas for Tip-Enhanced Raman Spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-11.	1.9	21
170	Dopamine Signaling Regulates Fat Content through \hat{l}^2 -Oxidation in Caenorhabditis elegans. PLoS ONE, 2014, 9, e85874.	1.1	20
171	Defect-Free Carbon Nanotube Coils. Nano Letters, 2016, 16, 2152-2158.	4.5	20
172	Twisted Bilayer Graphene: A Versatile Fabrication Method and the Detection of Variable Nanometric Strain Caused by Twist-Angle Disorder. ACS Applied Nano Materials, 2021, 4, 1858-1866.	2.4	19
173	Coupling and scattering power exchange between phonon modes observed in surface-enhanced Raman spectra of single-wall carbon nanotubes on silver colloidal clusters. Physical Review B, 2001, 63, .	1.1	18
174	Advances in single nanotube spectroscopy: Raman spectra from cross-polarized light and chirality dependence of Raman frequencies. Carbon, 2004, 42, 1067-1069.	5.4	18
175	The Kataura plot for single wall carbon nanotubes on top of crystalline quartz. Physica Status Solidi (B): Basic Research, 2010, 247, 2835-2837.	0.7	18
176	Measuring Disorder in Graphene with Raman Spectroscopy. , 0, , .		18
177	Introduction to the Important and Exciting Aspects of Carbon-Nanotube Science and Technology. Topics in Applied Physics, 2007, , 1-12.	0.4	18
178	Ferroelastic phase transition inCs3Bi2I9: A neutron diffraction study. Physical Review B, 2000, 61, 3857-3862.	1.1	17
179	Stokes and anti-Stokes Raman spectra of the high-energy C-C stretching modes in graphene and diamond. Physica Status Solidi (B): Basic Research, 2015, 252, 2380-2384.	0.7	17
180	Chapter 4 Raman spectroscopy of carbon nanotubes. Contemporary Concepts of Condensed Matter Science, 2008, 3, 83-108.	0.5	16

#	Article	IF	Citations
181	Ion beam nanopatterning and micro-Raman spectroscopy analysis on HOPG for testing FIB performances. Ultramicroscopy, 2011, 111, 1338-1342.	0.8	16
182	Raman spectroscopy polarization dependence analysis in two-dimensional gallium sulfide. Physical Review B, 2020, 102, .	1.1	16
183	Quantifying defects in N-layer graphene via a phenomenological model of Raman spectroscopy. Nuclear Instruments & Methods in Physics Research B, 2014, 319, 71-74.	0.6	15
184	Resonant anti-Stokes Raman scattering in single-walled carbon nanotubes. Physical Review B, 2017, 96, .	1.1	15
185	Linkage Between Micro- and Nano-Raman Spectroscopy of Defects in Graphene. Physical Review Applied, 2020, 14, .	1.5	15
186	In Situ Atomic Force Microscopy Tip-Induced Deformations and Raman Spectroscopy Characterization of Single-Wall Carbon Nanotubes. Nano Letters, 2012, 12, 4110-4116.	4.5	14
187	A fingerprint of amyloid plaques in a bitransgenic animal model of Alzheimer's disease obtained by statistical unmixing analysis of hyperspectral Raman data. Analyst, The, 2019, 144, 7049-7056.	1.7	14
188	Few-Wall Carbon Nanotube Coils. Nano Letters, 2020, 20, 953-962.	4.5	14
189	Nanofabrication of plasmon-tunable nanoantennas for tip-enhanced Raman spectroscopy. Journal of Chemical Physics, 2020, 153, 114201.	1.2	14
190	Nano-optical Imaging of In-Plane Homojunctions in Graphene and MoS ₂ van der Waals Heterostructures on Talc and SiO ₂ . Journal of Physical Chemistry Letters, 2021, 12, 7625-7631.	2.1	14
191	Impact of substrate on tip-enhanced Raman spectroscopy: A comparison between field-distribution simulations and graphene measurements. Physical Review Research, 2020, 2, .	1.3	14
192	Anomalous behavior of the internal stretching modes above and below the incommensurate phase transition of Cs2HgBr4. Physical Review B, 1998, 57, 203-210.	1.1	13
193	High-temperature phase transitions in incommensurate Rb2WO4. Journal of Physics Condensed Matter, 2000, 12, 9307-9315.	0.7	13
194	Optical Properties of Plasmonâ€Tunable Tip Pyramids for Tipâ€Enhanced Raman Spectroscopy. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000212.	1.2	13
195	Structural Analysis of Cs2HgBr4 in Normal, Incommensurate and Twinned Phases. Acta Crystallographica Section B: Structural Science, 1998, 54, 197-203.	1.8	12
196	Recent advances in carbon nanotube photophysics. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 29, 443-446.	1.3	12
197	Study of Carbon Nanotube-Substrate Interaction. Journal of Nanotechnology, 2012, 2012, 1-10.	1.5	12
198	Raman spectra of twisted bilayer graphene close to the magic angle. 2D Materials, 2022, 9, 025007.	2.0	12

#	Article	IF	CITATIONS
199	Thermodynamics of the incommensurate state inRb2WO4:The Lifshitz point inA2BX4compounds. Physical Review B, 2000, 61, 3147-3150.	1.1	11
200	Raman spectroscopy of nanoscale carbons and of an isolated carbon nanotube. Molecular Crystals and Liquid Crystals, 2002, 387, 21-29.	0.4	11
201	Choroidal neovascularization after accidental macular damage by laser. Clinical and Experimental Ophthalmology, 2005, 33, 298-300.	1.3	11
202	Nonlinear and vibrational microscopy for label-free characterization of amyloid- \hat{l}^2 plaques in Alzheimer's disease model. Analyst, The, 2021, 146, 2945-2954.	1.7	11
203	The limits of near field immersion microwave microscopy evaluated by imaging bilayer graphene moiré patterns. Nature Communications, 2021, 12, 2980.	5.8	11
204	Finite length effects in DNA-wrapped carbon nanotubes. Chemical Physics Letters, 2007, 443, 328-332.	1.2	10
205	Raman scattering from one-dimensional carbon systems. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 81-87.	1.3	10
206	Dynamics of the Formation of Carbon Nanotube Serpentines. Physical Review Letters, 2013, 110, 105502.	2.9	10
207	Temperature-dependent phonon dynamics and anharmonicity of suspended and supported few-layer gallium sulfide. Nanotechnology, 2020, 31, 495702.	1.3	10
208	Biocompatibility assessment of fibrous nanomaterials in mammalian embryos. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1151-1159.	1.7	9
209	Stokes–anti-Stokes correlated photon properties akin to photonic Cooper pairs. Physical Review B, 2019, 99, .	1.1	9
210	Lifetime and polarization for real and virtual correlated Stokes-anti-Stokes Raman scattering in diamond. Physical Review Research, 2020, 2, .	1.3	9
211	Raoet al.Reply:. Physical Review Letters, 2000, 85, 3545-3545.	2.9	7
212	Semiconducting Carbon Nanotubes. AIP Conference Proceedings, 2005, , .	0.3	7
213	Resonance Raman spectroscopy in one-dimensional carbon materials. Anais Da Academia Brasileira De Ciencias, 2006, 78, 423-439.	0.3	7
214	Decarboxylation of Oxidized Single-Wall Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2007, 7, 3421-3430.	0.9	7
215	Vibrations in Graphene. , 2017, , 71-89.		7
216	Raman study of nanotube–substrate interaction using singleâ€wall carbon nanotubes grown on crystalline quartz. Physica Status Solidi (B): Basic Research, 2011, 248, 2536-2539.	0.7	6

#	Article	IF	CITATIONS
217	Atomic size-limited intercalation into single wall carbon nanotubes. Nanotechnology, 2007, 18, 435705.	1.3	5
218	Brazilian science towards a phase transition. Nature Materials, 2010, 9, 528-531.	13.3	5
219	Raman Spectroscopy: Characterization of Edges, Defects, and the Fermi Energy of Graphene and sp 2 Carbons. Nanoscience and Technology, 2011, , 15-55.	1.5	5
220	Estudo teórico e experimental de espectros infravermelho de ésteres de ácido graxo presentes na composição do biodiesel de soja. Quimica Nova, 2012, 35, 1752-1757.	0.3	5
221	Tip-enhanced Raman Spectroscopy of Graphene., 2019,,.		5
222	Effective Hamiltonian for Stokes–anti-Stokes pair generation with pump and probe polarized modes. Physical Review B, 2020, 102, .	1.1	5
223	Event chronology analysis of the historical development of tipâ€enhanced Raman spectroscopy. Journal of Raman Spectroscopy, 2021, 52, 587-599.	1.2	5
224	Infrared study of the low-temperature phase transitions in incommensurateCs2HgBr4. Physical Review B, 1999, 59, 11251-11256.	1.1	4
225	Resonance Raman scattering: nondestructive and noninvasive technique for structural and electronic characterization of isolated single-wall carbon nanotubes. Brazilian Journal of Physics, 2002, 32, 921-924.	0.7	4
226	Nanometrology Links State-of-the-Art Academic Research and Ultimate Industry Needs for Technological Innovation. MRS Bulletin, 2007, 32, 988-993.	1.7	4
227	Exciton energy calculations for single wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2009, 246, 2581-2585.	0.7	4
228	Strain Discontinuity, Avalanche, and Memory in Carbon Nanotube Serpentine Systems. Nano Letters, 2015, 15, 5899-5904.	4.5	4
229	Physical Properties of Photonic Cooper Pairs Generated via Correlated Stokes–anti‧tokes Raman Scattering. Physica Status Solidi (B): Basic Research, 2019, 256, 1900218.	0.7	4
230	Nanomechanics of few-layer materials: do individual layers slide upon folding?. Beilstein Journal of Nanotechnology, 2020, 11, 1801-1808.	1.5	4
231	Properties of carbon particles in archeological and natural Amazon rainforest soils. Catena, 2020, 194, 104687.	2.2	4
232	Micro-Raman spectroscopy of lipid halo and dense-core amyloid plaques: aging process characterization in the Alzheimer's disease APPswePS1ΔE9 mouse model. Analyst, The, 2021, 146, 6014-6025.	1.7	4
233	Tip-Enhanced Spectroscopy and Imaging of Carbon Nanomaterials. World Scientific Series on Carbon Nanoscience, 2019, , 175-221.	0.1	4
234	Structural (n, m) determination of isolated single wall carbon nanotubes by resonant Raman scattering. AIP Conference Proceedings, 2001 , , .	0.3	3

#	Article	IF	CITATIONS
235	Double resonance raman spectrain disordered graphite and singlewall carbon nanotubes. Molecular Crystals and Liquid Crystals, 2002, 387, 63-72.	0.4	3
236	Nanostructured Materials: Metrology. , 2010, , 1-7.		3
237	Mildred S. Dresselhaus (1930–2017). Journal of Raman Spectroscopy, 2018, 49, 13-18.	1.2	3
238	Protocol and reference material for measuring the nanoantenna enhancement factor in Tip-enhanced Raman Spectroscopy. , 2019, , .		3
239	Stokes–anti-Stokes light-scattering process: A photon-wave-function approach. Physical Review A, 2020, 102, .	1.0	3
240	Structural and elemental analysis of biochars in the search of a synthetic path to mimetize anthropic Amazon soils. Journal of Environmental Management, 2021, 279, 111685.	3.8	3
241	Inclusion of the sample-tip interaction term in the theory of tip-enhanced Raman spectroscopy. Physical Review B, 2022, 105, .	1.1	3
242	Resonant Raman scattering of isolated single wall carbon nanotubes: Structural (n,m) determination and resonant window. AIP Conference Proceedings, 2001, , .	0.3	2
243	Raman on Carbon Nanotubes Using a Tunable Laser and Comparison with Photoluminescence. AIP Conference Proceedings, 2004, , .	0.3	2
244	The fundamental aspects of carbon nanotube metrology. Physica Status Solidi (B): Basic Research, 2007, 244, 4011-4015.	0.7	2
245	Electron Microscopy and Spectroscopy Analysis of Carbon Nanostructures in Highly Fertile Amazonian Anthrosoils. Microscopy and Microanalysis, 2012, 18, 1502-1503.	0.2	2
246	Observation of moir \tilde{A} © superlattices on twisted bilayer graphene by scanning microwave impedance microscopy. , 2020, , .		2
247	Relação de dispersão para os plásmon-poláritons de superfÃcie em uma interface plana metal/dielétrico. Revista Brasileira De Ensino De Fisica, 2017, 39, .	0.2	2
248	Graphene. Springer Handbooks, 2020, , 1171-1198.	0.3	2
249	Raman spectra-based structural classification analysis of quinoidal and derived molecular systems. Physical Chemistry Chemical Physics, 2022, 24, 1183-1190.	1.3	2
250	Polar domain walls and orientational disorder in incommensurate Cs2HgBr4. Ferroelectrics, 1999, 221, 79-84.	0.3	1
251	Chirality dependent G-band Raman intensity of an individual single wall carbon nanotube. AIP Conference Proceedings, 2001, , .	0.3	1
252	G-band Raman Spectra of Isolated Single Wal Carbon Nanotubes: Diameter and Chiraity Dependence. Materials Research Society Symposia Proceedings, 2001, 706, 1.	0.1	1

#	Article	IF	CITATIONS
253	Raman Spectra from One Carbon Nanotube. Materials Research Society Symposia Proceedings, 2001, 706, 1.	0.1	1
254	Resonance Raman Scattering in Carbon Nanotubes and Nanographites. AIP Conference Proceedings, 2003, , .	0.3	1
255	Raman Spectroscopy of Graphitic Foams. Materials Research Society Symposia Proceedings, 2004, 851, 450.	0.1	1
256	Resonance Raman Spectroscopy to Study and Characterize Defects on Carbon Nanotubes and other Nano-Graphite Systems. Materials Research Society Symposia Proceedings, 2004, 858, 1.	0.1	1
257	Electron-Phonon Interaction and Raman Intensities in Graphite. AIP Conference Proceedings, 2004, , .	0.3	1
258	Intermediate Frequency Raman Modes in Metallic and Semiconducting Carbon Nanotubes. AIP Conference Proceedings, 2005, , .	0.3	1
259	Trigonal Anisotropy in Graphite and Carbon Nanotubes. Molecular Crystals and Liquid Crystals, 2006, 455, 287-294.	0.4	1
260	Chirality dependence of the dielectric constant for the excitonic transition energy of singleâ€wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2010, 247, 2847-2850.	0.7	1
261	Raman Spectroscopy to Study Disorder and Perturbations in sp[sup 2] Nano-Carbons., 2010,,.		1
262	On the Formation of Carbon Nanotube Serpentines: Insights from Multi-Million Atom Molecular Dynamics Simulation. Materials Research Society Symposia Proceedings, 2011, 1284, 79.	0.1	1
263	Vision-based position control applied to probe positioning for Tip Enhanced Raman Spectroscopy. , 2016, , .		1
264	Study of the interaction between light and nanoantennas in Tip-Enhanced Raman Spectroscopy. , 2019, , .		1
265	Disorder and Defects in Two-Dimensional Materials Probed by Raman Spectroscopy. Springer Series in Materials Science, 2019, , 99-110.	0.4	1
266	Carbon Nanotubes and Bismuth Nanowires. , 2005, , .		1
267	Study of Carbon Nanostructures for Soil Fertility Improvement. Nanomedicine and Nanotoxicology, 2016, , 85-104.	0.1	1
268	Breit-Wigner-Fano Lineshape Analysis of the angential G-band of Metallic Nanotubes. Materials Research Society Symposia Proceedings, 2000, 633, 14101.	0.1	0
269	Polarized Raman Spectra of Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2000, 633, 651.	0.1	0
270	Micro-Raman spectroscopy of isolated single wall carbon nanotube. AIP Conference Proceedings, 2001, , .	0.3	0

#	Article	IF	CITATIONS
271	D-band Raman Spectra of Graphite and Single Wall Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2001, 706, 1.	0.1	O
272	Characterization of nanographite and carbon nanotubes by polarization dependent optical spectroscopy. Materials Research Society Symposia Proceedings, 2002, 737, 521.	0.1	0
273	Anisotropy in the Phonon Dispersion Relations of Graphite and Carbon Nanotubes Measured by Raman Spectroscopy. Materials Research Society Symposia Proceedings, 2002, 737, 652.	0.1	0
274	New effects in the resonance Raman features in one-dimensional systems: isolated single-wall carbon nanotube studies. AIP Conference Proceedings, 2002, , .	0.3	0
275	Dispersive Bands in Graphite and Carbon Nanotubes. AIP Conference Proceedings, 2003, , .	0.3	O
276	Double resonance Raman spectroscopy and optical properties of single wall carbon nanotubes. AIP Conference Proceedings, 2004, , .	0.3	0
277	Structural and Dynamical Aspects of Structural Phase Transitions on Incommensurate A2BX4compounds. Ferroelectrics, 2004, 305, 75-78.	0.3	O
278	Corrections to the Optical Transition Energies in Single-Wall Carbon Nanotubes of Smaller Diameters. Materials Research Society Symposia Proceedings, 2004, 858, 271.	0.1	0
279	Probing the Phonon-Assisted Relaxation Processes in DNA-wrapped Carbon Nanotubes Using Photoluminescence Spectroscopy. Materials Research Society Symposia Proceedings, 2004, 858, 52.	0.1	O
280	Spectroscopy of small diameter single-wall carbon nanotubes. AIP Conference Proceedings, 2005, , .	0.3	0
281	Electronic and Mechanical Properties of Super Carbon Nanotube Networks. Materials Research Society Symposia Proceedings, 2006, 963, 1.	0.1	O
282	PHOTOLUMINESCENCE AND PHOTOLUMINESCENCE EXCITATION SPECTROSCOPY OF SEMICONDUCTING SINGLE WALL CARBON NANOTUBES. International Journal of Modern Physics B, 2009, 23, 2676-2677.	1.0	0
283	Near-field Raman Microscopy and Spectroscopy of Carbon Nanotubes. , 2010, , .		O
284	Diameter Dependence of Dielectric Constant for the Excitonic Transition Energy of Single-Wall Carbon Nanotubes. , 2010, , .		0
285	Nanometrology satellite workshop reveals significant progress. MRS Bulletin, 2013, 38, 1076-1077.	1.7	O
286	VII Brazilian Congress on Metrology (Metrologia 2013). Journal of Physics: Conference Series, 2015, 575, 011001.	0.3	0
287	Normalized Spectral Responsivity Measurement of Photodiode by Direct Method Using a Supercontinuum Laser Source. , 2019, , .		0
288	Nanostructured Materials: Metrology. , 2016, , .		0