
Jinbei Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5256662/publications.pdf Version: 2024-02-01

LINREI WEI

#	Article	IF	CITATIONS
1	Multiâ€Resonance Induced Thermally Activated Delayed Fluorophores for Narrowband Green OLEDs. Angewandte Chemie - International Edition, 2019, 58, 16912-16917.	13.8	356
2	Induction of Strong Longâ€Lived Roomâ€Temperature Phosphorescence of <i>N</i> â€Phenylâ€2â€naphthylamin Molecules by Confinement in a Crystalline Dibromobiphenyl Matrix. Angewandte Chemie - International Edition, 2016, 55, 15589-15593.	e 13.8	265
3	Multiâ€Resonance Deepâ€Red Emitters with Shallow Potentialâ€Energy Surfaces to Surpass Energyâ€Gap Law**. Angewandte Chemie - International Edition, 2021, 60, 20498-20503.	13.8	259
4	Constructing Chargeâ€Transfer Excited States Based on Frontier Molecular Orbital Engineering: Narrowband Green Electroluminescence with High Color Purity and Efficiency. Angewandte Chemie - International Edition, 2020, 59, 17442-17446.	13.8	242
5	Molecularâ€Structure and Deviceâ€Configuration Optimizations toward Highly Efficient Green Electroluminescence with Narrowband Emission and High Color Purity. Advanced Optical Materials, 2020, 8, 1902142.	7.3	218
6	Achieving Pure Green Electroluminescence with CIEy of 0.69 and EQE of 28.2% from an Azaâ€Fused Multiâ€Resonance Emitter. Angewandte Chemie - International Edition, 2020, 59, 17499-17503.	13.8	211
7	Sterically Wrapped Multiple Resonance Fluorophors for Suppression of Concentration Quenching and Spectrum Broadening. Angewandte Chemie - International Edition, 2022, 61, .	13.8	140
8	Indolo[3,2,1â€ <i>jk</i>]carbazole Embedded Multipleâ€Resonance Fluorophors for Narrowband Deepâ€blue Electroluminescence with EQEâ‰^34.7 % and CIE _y â‰^0.085. Angewandte Chemie - Internatior Edition, 2021, 60, 12269-12273.	nal3.8	106
9	Achieving high power efficiency and low roll-off OLEDs based on energy transfer from thermally activated delayed excitons to fluorescent dopants. Chemical Communications, 2015, 51, 11972-11975.	4.1	95
10	Fusion of Multiâ€Resonance Fragment with Conventional Polycyclic Aromatic Hydrocarbon for Nearly BT.2020 Green Emission. Angewandte Chemie - International Edition, 2022, 61, .	13.8	95
11	Multiâ€Resonance Induced Thermally Activated Delayed Fluorophores for Narrowband Green OLEDs. Angewandte Chemie, 2019, 131, 17068-17073.	2.0	91
12	High performance full color OLEDs based on a class of molecules with dual carrier transport channels and small singlet–triplet splitting. Chemical Communications, 2015, 51, 10632-10635.	4.1	88
13	Efficient deep-blue OLEDs based on phenanthro[9,10-d]imidazole-containing emitters with AIE and bipolar transporting properties. Journal of Materials Chemistry C, 2016, 4, 10120-10129.	5.5	82
14	Purely Organic Phosphorescence Emitter-Based Efficient Electroluminescence Devices. Journal of Physical Chemistry Letters, 2019, 10, 5983-5988.	4.6	76
15	Achieving Pure Green Electroluminescence with CIEy of 0.69 and EQE of 28.2% from an Azaâ€Fused Multiâ€Resonance Emitter. Angewandte Chemie, 2020, 132, 17652-17656.	2.0	72
16	Induction of Strong Longâ€Lived Roomâ€Temperature Phosphorescence of <i>N</i> â€Phenylâ€2â€naphthylamin Molecules by Confinement in a Crystalline Dibromobiphenyl Matrix. Angewandte Chemie, 2016, 128, 15818-15822.	e 2.0	71
17	New multifunctional phenanthroimidazole–phosphine oxide hybrids for high-performance red, green and blue electroluminescent devices. Journal of Materials Chemistry C, 2014, 2, 6817-6826.	5.5	68
18	Constructing Organic Electroluminescent Material with Very High Color Purity and Efficiency Based on Polycyclization of the Multiple Resonance Parent Core. Angewandte Chemie - International Edition, 2022, 61, .	13.8	66

Jinbei Wei

#	Article	IF	CITATIONS
19	Multiâ€Resonance Deepâ€Red Emitters with Shallow Potentialâ€Energy Surfaces to Surpass Energyâ€Gap Law**. Angewandte Chemie, 2021, 133, 20661-20666.	2.0	58
20	Constructing Chargeâ€Transfer Excited States Based on Frontier Molecular Orbital Engineering: Narrowband Green Electroluminescence with High Color Purity and Efficiency. Angewandte Chemie, 2020, 132, 17595-17599.	2.0	54
21	Stable p/nâ€Dopable Conducting Redox Polymers for Highâ€Voltage Pseudocapacitor Electrode Materials: Structure–Performance Relationship and Detailed Investigation into Chargeâ€Trapping Effect. Advanced Energy Materials, 2017, 7, 1701063.	19.5	52
22	Exciplex-Based Electroluminescence: Over 21% External Quantum Efficiency and Approaching 100 lm/W Power Efficiency. Journal of Physical Chemistry Letters, 2019, 10, 2811-2816.	4.6	46
23	Novel diarylborane–phenanthroimidazole hybrid bipolar host materials for high-performance red, yellow and green electrophosphorescent devices. Organic Electronics, 2014, 15, 3211-3220.	2.6	44
24	Highly Efficient Electrofluorescence Material Based on Pure Organic Phosphor Sensitization**. Angewandte Chemie - International Edition, 2021, 60, 15335-15339.	13.8	40
25	Nitrogenâ€Embedded Multiâ€Resonance Heteroaromatics with Prolonged Homogeneous Hexatomic Rings. Angewandte Chemie - International Edition, 2022, 61, .	13.8	40
26	Highly Efficient and Stable Blue Organic Lightâ€Emitting Diodes based on Thermally Activated Delayed Fluorophor with Donorâ€Voidâ€Acceptor Motif. Advanced Science, 2022, 9, e2106018.	11.2	40
27	Highly efficient and stable deep-blue OLEDs based on narrowband emitters featuring an orthogonal spiro-configured indolo[3,2,1- <i>de</i>]acridine structure. Chemical Science, 2022, 13, 5622-5630.	7.4	39
28	Constructing high-performance blue, yellow and red electroluminescent devices based on a class of multifunctional organic materials. Journal of Materials Chemistry C, 2013, 1, 6594.	5.5	36
29	High-contrast and reversible mechanochromic luminescence of a D–π–A compound with a twisted molecular conformation. RSC Advances, 2015, 5, 71903-71910.	3.6	35
30	Sterically Wrapped Multiple Resonance Fluorophors for Suppression of Concentration Quenching and Spectrum Broadening. Angewandte Chemie, 2022, 134, .	2.0	32
31	Emission behaviors of unsymmetrical 1,3-diaryl-β-diketones: A model perfectly disclosing the effect of molecular conformation on luminescence of organic solids. Scientific Reports, 2015, 5, 9140.	3.3	30
32	Achieving Efficient Blue Delayed Electrofluorescence by Shielding Acceptors with Carbazole Units. ACS Applied Materials & Interfaces, 2019, 11, 28096-28105.	8.0	30
33	Benzimidazole–triazine based exciplex films as emitters and hosts to construct highly efficient OLEDs with a small efficiency roll-off. Journal of Materials Chemistry C, 2020, 8, 2700-2708.	5.5	27
34	Non-doped luminescent material based organic light-emitting devices displaying high brightness under very low driving voltage. Journal of Materials Chemistry C, 2016, 4, 7013-7019.	5.5	26
35	Indolo[3,2,1â€ <i>jk</i>]carbazole Embedded Multipleâ€Resonance Fluorophors for Narrowband Deepâ€blue Electroluminescence with EQEâ‰^34.7 % and CIE _y â‰^0.085. Angewandte Chemie, 2021, 133, 12377-12381.	2.0	22
36	Fusion of Multiâ€Resonance Fragment with Conventional Polycyclic Aromatic Hydrocarbon for Nearly BT.2020 Green Emission. Angewandte Chemie, 2022, 134, .	2.0	19

Jinbei Wei

#	Article	IF	CITATIONS
37	A twisted phenanthroimidazole based molecule with high triplet energy as a host material for high efficiency phosphorescent OLEDs. Journal of Materials Chemistry C, 2018, 6, 12888-12895.	5.5	18
38	Structurally simple phenanthroimidazole-based bipolar hosts for high-performance green and red electroluminescent devices. RSC Advances, 2015, 5, 73926-73934.	3.6	14
39	Bee-shaped host with ideal polarity and energy levels for high-efficiency blue and white fluorescent organic light-emitting diodes. Chemical Engineering Journal, 2021, 411, 128457.	12.7	13
40	Achieving Highâ€Performance Pureâ€Red Electrophosphorescent Iridium(III) Complexes Based on Optimizing Ancillary Ligands. Chemistry - A European Journal, 2020, 26, 4410-4418.	3.3	11
41	Direct observation of intramolecular coplanarity regulated polymorph emission of a tetraphenylethene derivative. Chinese Chemical Letters, 2020, 31, 2985-2987.	9.0	10
42	Constructing Organic Electroluminescent Material with Very High Color Purity and Efficiency Based on Polycyclization of Multiple Resonance Parent Core. Angewandte Chemie, 0, , .	2.0	10
43	Nitrogenâ€Embedded Multiâ€Resonance Heteroaromatics with Prolonged Homogeneous Hexatomic Rings. Angewandte Chemie, 0, , .	2.0	9
44	Suppressing Competitive Coordination Reaction for Ohmic Cathode Contact Using Amino-Substituted Organic Ligands and Air-Stable Metals. CCS Chemistry, 2021, 3, 367-376.	7.8	6
45	Geometric Shape Regulation and Noncovalent Synthesis of One-Dimensional Organic Luminescent Nano-/Micro-Materials. Journal of Physical Chemistry Letters, 2017, 8, 3711-3717.	4.6	5
46	Tunable charge-transport polarity in thienothiophene–bisoxoindolinylidene-benzodifurandione copolymers for high-performance field-effect transistors. Journal of Materials Chemistry C, 2022, 10, 2671-2680.	5.5	5
47	Phase- and Halogen-Dependent Room-Temperature Phosphorescence Properties of Biphenylnitrile Derivatives. Journal of Physical Chemistry C, 2021, 125, 27489-27496.	3.1	4
48	Highly Efficient Electrofluorescence Material Based on Pure Organic Phosphor Sensitization**. Angewandte Chemie, 2021, 133, 15463-15467.	2.0	2