Xin-hui Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5256162/publications.pdf

Version: 2024-02-01

3721 6282 28,730 305 89 158 citations h-index g-index papers 312 312 312 21746 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nature Communications, 2016, 7, 12122.	5.8	1,232
2	Transition Metal Carbides and Nitrides in Energy Storage and Conversion. Advanced Science, 2016, 3, 1500286.	5.6	1,001
3	High-Quality Metal Oxide Core/Shell Nanowire Arrays on Conductive Substrates for Electrochemical Energy Storage. ACS Nano, 2012, 6, 5531-5538.	7.3	972
4	Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. Journal of Materials Chemistry, 2011, 21, 9319.	6.7	669
5	Strong Sulfur Binding with Conducting Magnéli-Phase Ti _{<i>n</i>} O _{2<i>n</i>>βe"1} Nanomaterials for Improving Lithium–Sulfur Batteries. Nano Letters, 2014, 14, 5288-5294.	4.5	643
6	Green and Facile Fabrication of Hollow Porous MnO/C Microspheres from Microalgaes for Lithium-Ion Batteries. ACS Nano, 2013, 7, 7083-7092.	7.3	493
7	Graphene Quantum Dots Coated VO ₂ Arrays for Highly Durable Electrodes for Li and Na Ion Batteries. Nano Letters, 2015, 15, 565-573.	4.5	493
8	A V ₂ O ₅ /Conductiveâ€Polymer Core/Shell Nanobelt Array on Threeâ€Dimensional Graphite Foam: A Highâ€Rate, Ultrastable, and Freestanding Cathode for Lithiumâ€lon Batteries. Advanced Materials, 2014, 26, 5794-5800.	11.1	450
9	Generic Synthesis of Carbon Nanotube Branches on Metal Oxide Arrays Exhibiting Stable Highâ€Rate and Longâ€Cycle Sodiumâ€lon Storage. Small, 2016, 12, 3048-3058.	5.2	440
10	3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy, 2017, 37, 177-186.	8.2	431
11	A New Type of Porous Graphite Foams and Their Integrated Composites with Oxide/Polymer Core/Shell Nanowires for Supercapacitors: Structural Design, Fabrication, and Full Supercapacitor Demonstrations. Nano Letters, 2014, 14, 1651-1658.	4.5	428
12	Freestanding Co3O4 nanowire array for high performance supercapacitors. RSC Advances, 2012, 2, 1835.	1.7	414
13	Directional Construction of Vertical Nitrogenâ€Doped 1Tâ€2H MoSe ₂ /Graphene Shell/Core Nanoflake Arrays for Efficient Hydrogen Evolution Reaction. Advanced Materials, 2017, 29, 1700748.	11.1	404
14	Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale, 2014, 6, 5008-5048.	2.8	363
15	Popcorn Inspired Porous Macrocellular Carbon: Rapid Puffing Fabrication from Rice and Its Applications in Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1701110.	10.2	361
16	Confining Sulfur in Integrated Composite Scaffold with Highly Porous Carbon Fibers/Vanadium Nitride Arrays for Highâ€Performance Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1706391.	7.8	350
17	Heteroatom Doping: An Effective Way to Boost Sodium Ion Storage. Advanced Energy Materials, 2020, 10, 2000927.	10.2	309
18	Emerging of Heterostructure Materials in Energy Storage: A Review. Advanced Materials, 2021, 33, e2100855.	11.1	308

#	Article	IF	CITATIONS
19	Mesoporous Co3O4 monolayer hollow-sphere array as electrochemical pseudocapacitor material. Chemical Communications, 2011, 47, 5786.	2.2	307
20	Rationally Designed Hierarchical TiO ₂ @Fe ₂ O ₃ Hollow Nanostructures for Improved Lithium Ion Storage. Advanced Energy Materials, 2013, 3, 737-743.	10.2	296
21	Hierarchically porous NiO film grown by chemical bath depositionvia a colloidal crystal template as an electrochemical pseudocapacitor material. Journal of Materials Chemistry, 2011, 21, 671-679.	6.7	282
22	Graphene Sheet/Porous NiO Hybrid Film for Supercapacitor Applications. Chemistry - A European Journal, 2011, 17, 10898-10905.	1.7	266
23	Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance. Journal of Materials Chemistry, 2011, 21, 5492.	6.7	264
24	Phase Modulation of (1Tâ€2H)â€MoSe2/TiC Shell/Core Arrays via Nitrogen Doping for Highly Efficient Hydrogen Evolution Reaction. Advanced Materials, 2018, 30, e1802223.	11.1	244
25	Exploring Advanced Sandwiched Arrays by Vertical Graphene and Nâ€Đoped Carbon for Enhanced Sodium Storage. Advanced Energy Materials, 2017, 7, 1601804.	10.2	243
26	3D TiC/C Core/Shell Nanowire Skeleton for Dendriteâ€Free and Longâ€Life Lithium Metal Anode. Advanced Energy Materials, 2018, 8, 1702322.	10.2	237
27	Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 9209.	6.7	232
28	Multiscale Grapheneâ€Based Materials for Applications in Sodium Ion Batteries. Advanced Energy Materials, 2019, 9, 1803342.	10.2	215
29	Tubular TiC fibre nanostructures as supercapacitor electrode materials with stable cycling life and wide-temperature performance. Energy and Environmental Science, 2015, 8, 1559-1568.	15.6	210
30	Facilitation of sulfur evolution reaction by pyridinic nitrogen doped carbon nanoflakes for highly-stable lithium-sulfur batteries. Energy Storage Materials, 2018, 10, 1-9.	9.5	208
31	Electrode Design for Lithium–Sulfur Batteries: Problems and Solutions. Advanced Functional Materials, 2020, 30, 1910375.	7.8	206
32	Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 3295.	5.2	205
33	Co3O4–C core–shell nanowire array as an advanced anode material for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 15056.	6.7	202
34	Synergistic Doping and Intercalation: Realizing Deep Phase Modulation on MoS ₂ Arrays for Highâ€Efficiency Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 16289-16296.	7.2	201
35	Recent progress on MOFâ€derived carbon materials for energy storage. , 2020, 2, 176-202.		198
36	Controllable Growth of Conducting Polymers Shell for Constructing High-Quality Organic/Inorganic Core/Shell Nanostructures and Their Optical-Electrochemical Properties. Nano Letters, 2013, 13, 4562-4568.	4.5	197

#	Article	IF	CITATIONS
37	Interface issues of lithium metal anode for <scp>highâ€energy</scp> batteries: Challenges, strategies, and perspectives. InformaÄnÃ-Materiály, 2021, 3, 155-174.	8.5	195
38	Hollow TiO ₂ @Co ₉ S ₈ Core–Branch Arrays as Bifunctional Electrocatalysts for Efficient Oxygen/Hydrogen Production. Advanced Science, 2018, 5, 1700772.	5.6	189
39	FeN ₄ Sites Embedded into Carbon Nanofiber Integrated with Electrochemically Exfoliated Graphene for Oxygen Evolution in Acidic Medium. Advanced Energy Materials, 2018, 8, 1801912.	10.2	188
40	Hollow core–shell nanostructure supercapacitor electrodes: gap matters. Energy and Environmental Science, 2012, 5, 9085.	15.6	184
41	Defect Promoted Capacity and Durability of Nâ€MnO _{2â€"} <i>_x</i> Branch Arrays via Lowâ€Temperature NH ₃ Treatment for Advanced Aqueous Zinc Ion Batteries. Small, 2019, 15, e1905452.	5. 2	171
42	Implanting Niobium Carbide into Trichoderma Spore Carbon: a New Advanced Host for Sulfur Cathodes. Advanced Materials, 2019, 31, e1900009.	11.1	168
43	Encapsulating silicon nanoparticles into mesoporous carbon forming pomegranate-structured microspheres as a high-performance anode for lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 11197-11203.	5.2	167
44	Enhancing the Capacitive Storage Performance of Carbon Fiber Textile by Surface and Structural Modulation for Advanced Flexible Asymmetric Supercapacitors. Advanced Functional Materials, 2019, 29, 1806329.	7.8	167
45	Tailored Li ₂ S–P ₂ S ₅ glass-ceramic electrolyte by MoS ₂ doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 2829-2834.	5.2	158
46	Revisiting Scientific Issues for Industrial Applications of Lithium–Sulfur Batteries. Energy and Environmental Materials, 2018, 1, 196-208.	7.3	158
47	Ultrafine Metal Nanoparticles/Nâ€Doped Porous Carbon Hybrids Coated on Carbon Fibers as Flexible and Binderâ€Free Water Splitting Catalysts. Advanced Energy Materials, 2017, 7, 1700220.	10.2	156
48	Metal oxide nanoparticles induced step-edge nucleation of stable Li metal anode working under an ultrahigh current density of 15 mA cmâ ² . Nano Energy, 2018, 45, 203-209.	8.2	153
49	A Brief Review on Solid Electrolyte Interphase Composition Characterization Technology for Lithium Metal Batteries: Challenges and Perspectives. Journal of Physical Chemistry C, 2021, 125, 19060-19080.	1.5	153
50	VO ₂ nanoflake arrays for supercapacitor and Li-ion battery electrodes: performance enhancement by hydrogen molybdenum bronze as an efficient shell material. Materials Horizons, 2015, 2, 237-244.	6.4	152
51	Facile fabrication of integrated three-dimensional C-MoSe2/reduced graphene oxide composite with enhanced performance for sodium storage. Nano Research, 2016, 9, 1618-1629.	5.8	152
52	Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 632-640.	5.2	151
53	Facile synthesis of single-crystalline mesoporous \hat{i}_{\pm} -Fe2O3 and Fe3O4 nanorods as anode materials for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 20566.	6.7	148
54	Perovskite solar cell powered electrochromic batteries for smart windows. Materials Horizons, 2016, 3, 588-595.	6.4	148

#	Article	IF	CITATIONS
55	Confining Sulfur in N-Doped Porous Carbon Microspheres Derived from Microalgaes for Advanced Lithium–Sulfur Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 23782-23791.	4.0	148
56	Natural biomass-derived carbons for electrochemical energy storage. Materials Research Bulletin, 2017, 88, 234-241.	2.7	146
57	Smart Construction of Integrated CNTs/Li ₄ Ti ₅ O ₁₂ Core/Shell Arrays with Superior Highâ€Rate Performance for Application in Lithiumâ€lon Batteries. Advanced Science, 2018, 5, 1700786.	5.6	146
58	Enhancing Ultrafast Lithium Ion Storage of Li ₄ Ti ₅ O ₁₂ by Tailored TiC/C Core/Shell Skeleton Plus Nitrogen Doping. Advanced Functional Materials, 2018, 28, 1802756.	7.8	145
59	Multicolor electrochromic polyaniline–WO3 hybrid thin films: One-pot molecular assembling synthesis. Journal of Materials Chemistry, 2011, 21, 17316.	6.7	141
60	Unraveling the Intra and Intercycle Interfacial Evolution of Li ₆ PS ₅ Clâ€Based Allâ€Solidâ€State Lithium Batteries. Advanced Energy Materials, 2020, 10, 1903311.	10.2	141
61	Novel Metal@Carbon Spheres Core–Shell Arrays by Controlled Selfâ€Assembly of Carbon Nanospheres: A Stable and Flexible Supercapacitor Electrode. Advanced Energy Materials, 2015, 5, 1401709.	10.2	139
62	Oxygen vacancy modulated Ti2Nb10O29-x embedded onto porous bacterial cellulose carbon for highly efficient lithium ion storage. Nano Energy, 2019, 58, 355-364.	8.2	137
63	Porous Carbon Hosts for Lithium–Sulfur Batteries. Chemistry - A European Journal, 2019, 25, 3710-3725.	1.7	136
64	All-solid-state lithium–sulfur batteries based on a newly designed Li ₇ P _{2.9} Mn _{0.1} S _{10.7} I _{0.3} superionic conductor. Journal of Materials Chemistry A, 2017, 5, 6310-6317.	5.2	133
65	Hollow metallic 1T MoS ₂ arrays grown on carbon cloth: a freestanding electrode for sodium ion batteries. Journal of Materials Chemistry A, 2018, 6, 18318-18324.	5.2	133
66	In Situ Solid Electrolyte Interphase from Spray Quenching on Molten Li: A New Way to Construct Highâ€Performance Lithiumâ€Metal Anodes. Advanced Materials, 2019, 31, e1806470.	11.1	133
67	Li ₂ S ₆ â€Integrated PEOâ€Based Polymer Electrolytes for Allâ€Solidâ€State Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 17701-17706.	7.2	127
68	Ionic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 12934-12942.	5.2	126
69	Spore Carbon from <i>Aspergillus Oryzae</i> for Advanced Electrochemical Energy Storage. Advanced Materials, 2018, 30, e1805165.	11.1	122
70	Boosting sodium ion storage by anchoring MoO ₂ on vertical graphene arrays. Journal of Materials Chemistry A, 2018, 6, 15546-15552.	5.2	118
71	A Newly Designed Composite Gel Polymer Electrolyte Based on Poly(Vinylidene) Tj ETQq1 1 0.784314 rgBT /Ove	erlock 10 T 1.7	f 50 107 Td (
72	Câ€Plasma of Hierarchical Graphene Survives SnS Bundles for Ultrastable and High Volumetric Naâ€lon Storage. Advanced Materials, 2018, 30, e1804833.	11.1	117

#	Article	IF	Citations
73	Anchoring MnO2 on nitrogen-doped porous carbon nanosheets as flexible arrays cathodes for advanced rechargeable Zn–MnO2 batteries. Energy Storage Materials, 2020, 29, 52-59.	9.5	117
74	Enhanced electrochromic and energy storage performance in mesoporous WO ₃ film and its application in a bi-functional smart window. Nanoscale, 2018, 10, 8162-8169.	2.8	116
75	Introducing Oxygen Defects into Phosphate Ions Intercalated Manganese Dioxide/Vertical Multilayer Graphene Arrays to Boost Flexible Zinc Ion Storage. Small Methods, 2020, 4, 1900828.	4.6	115
76	Construction of Co3O4 nanotubes as high-performance anode material for lithium ion batteries. Electrochimica Acta, 2015, 160, 15-21.	2.6	113
77	Exploring Selfâ€Healing Liquid Na–K Alloy for Dendriteâ€Free Electrochemical Energy Storage. Advanced Materials, 2018, 30, e1804011.	11.1	112
78	$\label{lem:hierarchical} Hierarchical porous Ti < sub > 2 < /sub > Nb < sub > 10 < /sub > O < sub > 29 < /sub > nanospheres as superior anode materials for lithium ion storage. Journal of Materials Chemistry A, 2017, 5, 21134-21139.$	5.2	111
79	Oxygen Defect Modulated Titanium Niobium Oxide on Graphene Arrays: An Openâ€Door for Highâ€Performance 1.4 V Symmetric Supercapacitor in Acidic Aqueous Electrolyte. Advanced Functional Materials, 2018, 28, 1805618.	7.8	110
80	Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation–expansion–microexplosion mechanism. Journal of Materials Chemistry, 2012, 22, 10452.	6.7	109
81	Straw–Brick‣ike Carbon Fiber Cloth/Lithium Composite Electrode as an Advanced Lithium Metal Anode. Small Methods, 2018, 2, 1800035.	4.6	106
82	Nitrogenâ€Doped Carbon Embedded MoS ₂ Microspheres as Advanced Anodes for Lithium―and Sodium―on Batteries. Chemistry - A European Journal, 2016, 22, 11617-11623.	1.7	104
83	Vertical graphene/Ti2Nb10O29/hydrogen molybdenum bronze composite arrays for enhanced lithium ion storage. Energy Storage Materials, 2018, 12, 137-144.	9.5	103
84	Bio-inspired fabrication of carbon nanotiles for high performance cathode of Li–S batteries. Journal of Materials Chemistry A, 2014, 2, 2290-2296.	5.2	102
85	Mesoporous NiCo ₂ O ₄ Nanoplates on Three-Dimensional Graphene Foam as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28274-28282.	4.0	100
86	3D CNTs Networks Enable MnO ₂ Cathodes with High Capacity and Superior Rate Capability for Flexible Rechargeable Zn–MnO ₂ Batteries. Small Methods, 2019, 3, 1900525.	4.6	99
87	Rationally Designed Silicon Nanostructures as Anode Material for Lithiumâ€lon Batteries. Advanced Engineering Materials, 2018, 20, 1700591.	1.6	97
88	Original growth mechanism for ultra-stable dendrite-free potassium metal electrode. Nano Energy, 2019, 62, 367-375.	8.2	93
89	Boosting fast energy storage by synergistic engineering of carbon and deficiency. Nature Communications, 2020, 11, 132.	5.8	92
90	Synthesis of MnO/C composites derived from pollen template for advanced lithium-ion batteries. Electrochimica Acta, 2015, 152, 286-293.	2.6	91

#	Article	lF	Citations
91	Bacterium, Fungus, and Virus Microorganisms for Energy Storage and Conversion. Small Methods, 2019, 3, 1900596.	4.6	91
92	Novel carbon channels from loofah sponge for construction of metal sulfide/carbon composites with robust electrochemical energy storage. Journal of Materials Chemistry A, 2017, 5, 7578-7585.	5.2	90
93	Silicon-Doped Argyrodite Solid Electrolyte Li ₆ PS ₅ I with Improved Ionic Conductivity and Interfacial Compatibility for High-Performance All-Solid-State Lithium Batteries. ACS Applied Materials & Dept. 12, 41538-41545.	4.0	90
94	Singleâ€Crystalline, Metallic TiC Nanowires for Highly Robust and Wideâ€Temperature Electrochemical Energy Storage. Small, 2017, 13, 1602742.	5.2	89
95	All-solid-state electrochromic devices based on WO3 NiO films: material developments and future applications. Science China Chemistry, 2017, 60, 3-12.	4.2	88
96	A novel durable double-conductive core-shell structure applying to the synthesis of silicon anode for lithium ion batteries. Journal of Power Sources, 2018, 384, 207-213.	4.0	87
97	Biomass derived Ni(OH)2@porous carbon/sulfur composites synthesized by a novel sulfur impregnation strategy based on supercritical CO2 technology for advanced Li-S batteries. Journal of Power Sources, 2018, 378, 73-80.	4.0	87
98	Coupled Biphase (1Tâ€2H)â€MoSe ₂ on Mold Spore Carbon for Advanced Hydrogen Evolution Reaction. Small, 2019, 15, e1901796.	5.2	87
99	Coupling a Sponge Metal Fibers Skeleton with In Situ Surface Engineering to Achieve Advanced Electrodes for Flexible Lithium–Sulfur Batteries. Advanced Materials, 2020, 32, e2003657.	11.1	86
100	Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor. Scientific Reports, 2012, 2, 981.	1.6	85
101	A CNT cocoon on sodium manganate nanotubes forming a core/branch cathode coupled with a helical carbon nanofibre anode for enhanced sodium ion batteries. Journal of Materials Chemistry A, 2016, 4, 11207-11213.	5.2	85
102	Coupling PEDOT on Mesoporous Vanadium Nitride Arrays for Advanced Flexible Allâ€Solidâ€State Supercapacitors. Small, 2020, 16, e2003434.	5.2	85
103	Employing Ni-Embedded Porous Graphitic Carbon Fibers for High-Efficiency Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2022, 14, 10457-10466.	4.0	82
104	SnO ₂ Nanoflake Arrays Coated with Polypyrrole on a Carbon Cloth as Flexible Anodes for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 24198-24204.	4.0	81
105	High-Index-Faceted Ni3S2 Branch Arrays as Bifunctional Electrocatalysts for Efficient Water Splitting. Nano-Micro Letters, 2019, 11, 12.	14.4	81
106	Multifunctional Hyphae Carbon Powering Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, e2107415.	11.1	81
107	Superior high-rate lithium-ion storage on Ti2Nb10O29 arrays via synergistic TiC/C skeleton and N-doped carbon shell. Nano Energy, 2018, 54, 304-312.	8.2	80
108	Fabrication of metal oxide nanobranches on atomic-layer-deposited TiO2 nanotube arrays and their application in energy storage. Nanoscale, 2013, 5, 6040.	2.8	79

#	Article	IF	Citations
109	A highly ion-conductive three-dimensional LLZAO-PEO/LiTFSI solid electrolyte for high-performance solid-state batteries. Chemical Engineering Journal, 2020, 394, 124993.	6.6	79
110	Integration of Energy Harvesting and Electrochemical Storage Devices. Advanced Materials Technologies, 2017, 2, 1700182.	3.0	78
111	High-energy cathode materials for Li-ion batteries: A review of recent developments. Science China Technological Sciences, 2015, 58, 1809-1828.	2.0	74
112	Molybdenum Selenide Electrocatalysts for Electrochemical Hydrogen Evolution Reaction. ChemElectroChem, 2019, 6, 3530-3548.	1.7	73
113	Biotemplating of phosphate hierarchical rechargeable LiFePO4/C spirulina microstructures. Journal of Materials Chemistry, 2011, 21, 6498.	6.7	71
114	Hybrid vertical graphene/lithium titanate–CNTs arrays for lithium ion storage with extraordinary performance. Journal of Materials Chemistry A, 2017, 5, 8916-8921.	5.2	71
115	Ordered lithiophilic sites to regulate Li plating/stripping behavior for superior lithium metal anodes. Journal of Materials Chemistry A, 2019, 7, 21794-21801.	5.2	71
116	Etiology of Severe Community-Acquired Pneumonia in Adults Based on Metagenomic Next-Generation Sequencing: A Prospective Multicenter Study. Infectious Diseases and Therapy, 2020, 9, 1003-1015.	1.8	71
117	A synergistic vertical graphene skeleton and S–C shell to construct high-performance TiNb ₂ O ₇ -based core/shell arrays. Journal of Materials Chemistry A, 2018, 6, 20195-20204.	5.2	70
118	Nitrogen-Doped Sponge Ni Fibers as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. Nano-Micro Letters, 2019, 11, 21.	14.4	70
119	Exploring hydrogen molybdenum bronze for sodium ion storage: Performance enhancement by vertical graphene core and conductive polymer shell. Nano Energy, 2018, 44, 265-271.	8.2	69
120	Construction of Allâ€Solidâ€State Batteries based on a Sulfurâ€Graphene Composite and Li _{9.54} Si _{1.74} P _{1.44} S _{11.7} Cl _{0.3} Solid Electrolyte. Chemistry - A European Journal, 2017, 23, 13950-13956.	1.7	68
121	Biotemplated Fabrication of Sn@C Anode Materials Based on the Unique Metal Biosorption Behavior of Microalgae. ACS Applied Materials & Samp; Interfaces, 2014, 6, 3696-3702.	4.0	67
122	Template-free synthesis of hollow \hat{l}_{\pm} -Fe ₂ O ₃ microcubes for advanced lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 2307-2312.	5.2	66
123	Monolayer titanium carbide hollow sphere arrays formed via an atomic layer deposition assisted method and their excellent high-temperature supercapacitor performance. Journal of Materials Chemistry A, 2016, 4, 18717-18722.	5.2	66
124	Hierarchical MoS ₂ /Carbon Composite Microspheres as Advanced Anodes for Lithium/Sodiumâ€ion Batteries. Chemistry - A European Journal, 2018, 24, 11220-11226.	1.7	65
125	Metal–CO ₂ Electrochemistry: From CO ₂ Recycling to Energy Storage. Advanced Energy Materials, 2021, 11, 2100667.	10.2	65
126	Rational construction of a metal core for smart combination with Li ₄ Ti ₅ O ₁₂ as integrated arrays with superior high-rate Li-ion storage performance. Journal of Materials Chemistry A, 2017, 5, 1394-1399.	5.2	64

#	Article	lF	CITATIONS
127	One-pot Biotemplate Synthesis of FeS 2 Decorated Sulfur-doped Carbon Fiber as High Capacity Anode for Lithium-ion Batteries. Electrochimica Acta, 2016, 209, 201-209.	2.6	63
128	Atomic-layer-deposited iron oxide on arrays of metal/carbon spheres and their application for electrocatalysis. Nano Energy, 2016, 20, 244-253.	8.2	62
129	<i>In situ</i> formation of a Li ₃ N-rich interface between lithium and argyrodite solid electrolyte enabled by nitrogen doping. Journal of Materials Chemistry A, 2021, 9, 13531-13539.	5.2	62
130	Large-scale synthesis of high-quality lithium-graphite hybrid anodes for mass-controllable and cycling-stable lithium metal batteries. Energy Storage Materials, 2018, 15, 31-36.	9.5	59
131	The Development Trend of Graphene Derivatives. Journal of Electronic Materials, 2022, 51, 4107-4114.	1.0	58
132	Metal-Embedded Porous Graphitic Carbon Fibers Fabricated from Bamboo Sticks as a Novel Cathode for Lithium–Sulfur Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 13598-13605.	4.0	57
133	A multicolor electrochromic film based on a SnO ₂ /V ₂ O ₅ core/shell structure for adaptive camouflage. Journal of Materials Chemistry C, 2019, 7, 5702-5709.	2.7	57
134	Multiscale Porous Carbon Nanomaterials for Applications in Advanced Rechargeable Batteries. Batteries and Supercaps, 2019, 2, 9-36.	2.4	56
135	A Versatile Li _{6.5} In _{0.25} P _{0.75} S ₅ I Sulfide Electrolyte Triggered by Ultimateâ€Energy Mechanical Alloying for Allâ€Solidâ€State Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2101521.	10.2	55
136	Efficient oxygen reduction reaction using mesoporous Ni-doped Co ₃ O ₄ nanowire array electrocatalysts. Journal of Materials Chemistry A, 2015, 3, 18372-18379.	5.2	54
137	Rational synthesis of Li ₄ Ti ₅ O ₁₂ /N-C nanotube arrays as advanced high-rate electrodes for lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 3857-3863.	5.2	54
138	Recent Advances in Carbon Anodes for Sodiumâ€ion Batteries. Chemical Record, 2022, 22, .	2.9	53
139	Recent Developments of Allâ€Solidâ€State Lithium Secondary Batteries with Sulfide Inorganic Electrolytes. Chemistry - A European Journal, 2018, 24, 6007-6018.	1.7	52
140	Empowering Metal Phosphides Anode with Catalytic Attribute toward Superior Cyclability for Lithiumâ€lon Storage. Advanced Functional Materials, 2019, 29, 1809051.	7.8	52
141	A gel polymer electrolyte based on PVDF-HFP modified double polymer matrices via ultraviolet polymerization for lithium-sulfur batteries. Journal of Colloid and Interface Science, 2020, 558, 145-154.	5.0	52
142	TiC/NiO Core/Shell Nanoarchitecture with Battery-Capacitive Synchronous Lithium Storage for High-Performance Lithium-Ion Battery. ACS Applied Materials & Samp; Interfaces, 2015, 7, 11842-11848.	4.0	51
143	Boosting Highâ∈Rate Sodium Storage Performance of Nâ€Doped Carbonâ€Encapsulated Na ₃ V ₂ (PO ₄) ₃ Nanoparticles Anchoring on Carbon Cloth. Small, 2019, 15, e1902432.	5.2	51
144	Green and facile synthesis of Fe ₃ O ₄ and graphene nanocomposites with enhanced rate capability and cycling stability for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 16206-16212.	5.2	50

#	Article	IF	CITATIONS
145	Improved Ionic Conductivity and Li Dendrite Suppression Capability toward Li $<$ sub $>7<$ sub $>P<$ sub $>3<$ sub $>S<$ sub $>11<$ sub $>$ -Based Solid Electrolytes Triggered by Nb and O Cosubstitution. ACS Applied Materials & Cosubstitution. ACS Applied Materials & Cosubstitution.	4.0	50
146	A facile, scalable, high stability Lithium metal anode. SusMat, 2022, 2, 104-112.	7.8	50
147	Supercritical CO ₂ mediated incorporation of sulfur into carbon matrix as cathode materials towards high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 212-222.	5.2	49
148	Ti ³⁺ Selfâ€Doped Li ₄ Ti ₅ O ₁₂ Anchored on Nâ€Doped Carbon Nanofiber Arrays for Ultrafast Lithiumâ€ion Storage. Small, 2019, 15, e1905296.	5.2	49
149	N-doped CoO nanowire arrays as efficient electrocatalysts for oxygen evolution reaction. Journal of Energy Chemistry, 2019, 37, 13-17.	7.1	49
150	A Powerful Oneâ€Step Puffing Carbonization Method for Construction of Versatile Carbon Composites with Highâ€Efficiency Energy Storage. Advanced Materials, 2021, 33, e2102796.	11.1	48
151	Assembling Co9S8 nanoflakes on Co3O4 nanowires as advanced core/shell electrocatalysts for oxygen evolution reaction. Journal of Energy Chemistry, 2017, 26, 1203-1209.	7.1	46
152	Oxygen defect boosted N-doped Ti2Nb10O29 anchored on core-branch carbon skeleton for both high-rate liquid & Solid-state lithium ion batteries. Energy Storage Materials, 2020, 25, 555-562.	9.5	46
153	A Stretchable and Safe Polymer Electrolyte with a Protectingâ€Layer Strategy for Solidâ€State Lithium Metal Batteries. Advanced Science, 2021, 8, 2003241.	5.6	46
154	In situ confocal microscopic observation on inhibiting the dendrite formation of a-CN _x /Li electrode. Journal of Materials Chemistry A, 2016, 4, 15597-15604.	5.2	45
155	A green and facile strategy for the low-temperature and rapid synthesis of Li ₂ S@PC–CNT cathodes with high Li ₂ S content for advanced Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 9906-9914.	5.2	45
156	Directional construction of Cu2S branch arrays for advanced oxygen evolution reaction. Journal of Energy Chemistry, 2019, 39, 61-67.	7.1	45
157	Polypyrrole-Coated Sodium Manganate Hollow Microspheres as a Superior Cathode for Sodium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 15630-15637.	4.0	45
158	Construction of Nitrogenâ€Doped Carbonâ€Coated MoSe ₂ Microspheres with Enhanced Performance for Lithium Storage. Chemistry - A European Journal, 2017, 23, 12924-12929.	1.7	43
159	A Facile Way to Construct Stable and Ionic Conductive Lithium Sulfide Nanoparticles Composed Solid Electrolyte Interphase on Li Metal Anode. Advanced Functional Materials, 2021, 31, 2006380.	7.8	43
160	Spatially Confined Synthesis of SnSe Spheres Encapsulated in N, Se Dual-Doped Carbon Networks toward Fast and Durable Sodium Storage. ACS Applied Materials & Samp; Interfaces, 2022, 14, 4230-4241.	4.0	43
161	Stabilizing the interphase between Li and Argyrodite electrolyte through synergistic phosphating process for all-solid-state lithium batteries. Nano Energy, 2022, 96, 107104.	8.2	43
162	Enhancement of the advanced Na storage performance of Na ₃ V ₂ (PO ₄) ₃ in a symmetric sodium full cell <i>via</i>) a dual strategy design. Journal of Materials Chemistry A, 2019, 7, 10231-10238.	5.2	42

#	Article	IF	Citations
163	Self-supported VO ₂ arrays decorated with N-doped carbon as an advanced cathode for lithium-ion storage. Journal of Materials Chemistry A, 2019, 7, 6644-6650.	5.2	41
164	Pineâ€Needleâ€Like Cu–Co Skeleton Composited with Li ₄ Ti ₅ O ₁₂ Forming Core–Branch Arrays for Highâ€Rate Lithium Ion Storage. Small, 2018, 14, e1704339.	5.2	40
165	3D ultraviolet polymerized electrolyte based on PEO modified PVDF-HFP electrospun membrane for high-performance lithium-sulfur batteries. Electrochimica Acta, 2020, 329, 135108.	2.6	40
166	Heterostructured NiS2@SnS2 hollow spheres as superior high-rate and durable anodes for sodium-ion batteries. Science China Chemistry, 2022, 65, 1420-1432.	4.2	40
167	Growth of and methanol electro-oxidation by gold nanowires with high density stacking faults. Journal of Materials Chemistry, 2011, 21, 4843.	6.7	39
168	Prereduction of Metal Oxides via Carbon Plasma Treatment for Efficient and Stable Electrocatalytic Hydrogen Evolution. Small, 2018, 14, e1800340.	5.2	39
169	Nonâ€Newtonian Fluid State K–Na Alloy for a Stretchable Energy Storage Device. Small Methods, 2019, 3, 1900383.	4.6	39
170	In Situ Probing Multipleâ€Scale Structures of Energy Materials for Liâ€Ion Batteries. Small Methods, 2020, 4, 1900223.	4.6	39
171	Interfacial Reactions in Inorganic Allâ€Solidâ€State Lithium Batteries. Batteries and Supercaps, 2021, 4, 8-38.	2.4	39
172	Exploring highly porous Co2P nanowire arrays for electrochemical energy storage. Journal of Power Sources, 2017, 342, 964-969.	4.0	38
173	Oxide Nanostructures Hyperbranched with Thin and Hollow Metal Shells for Highâ€Performance Nanostructured Battery Electrodes. Small, 2014, 10, 2419-2428.	5. 2	37
174	Sulfur synchronously electrodeposited onto exfoliated graphene sheets as a cathode material for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 16513-16519.	5.2	37
175	High-content of sulfur uniformly embedded in mesoporous carbon: a new electrodeposition synthesis and an outstanding lithium–sulfur battery cathode. Journal of Materials Chemistry A, 2017, 5, 5905-5911.	5.2	37
176	Bifunctional NiFe layered double hydroxide@Ni ₃ S ₂ heterostructure as efficient electrocatalyst for overall water splitting. Nanotechnology, 2019, 30, 484001.	1.3	37
177	Synergy of Ion Doping and Spiral Array Architecture on Ti ₂ Nb ₁₀ O ₂₉ : A New Way to Achieve Highâ€Power Electrodes. Advanced Functional Materials, 2020, 30, 2002665.	7.8	37
178	Enhanced sulfide chemisorption by conductive Al-doped ZnO decorated carbon nanoflakes for advanced Li–S batteries. Nano Research, 2018, 11, 477-489.	5.8	36
179	Unveiling the solid-solution charge storage mechanism in 1T vanadium disulfide nanoarray cathodes. Journal of Materials Chemistry A, 2020, 8, 9068-9076.	5. 2	36
180	Supercritical fluid assisted biotemplating synthesis of Si–O–C microspheres from microalgae for advanced Li-ion batteries. RSC Advances, 2016, 6, 69764-69772.	1.7	35

#	Article	IF	Citations
181	Biomass-derived carbon/silicon three-dimensional hierarchical nanostructure as anode material for lithium ion batteries. Materials Research Bulletin, 2017, 96, 340-346.	2.7	35
182	Hydrothermal synthesized porous Co(OH)2 nanoflake film for supercapacitor application. Science Bulletin, 2012, 57, 4215-4219.	1.7	34
183	Excess adenosine A2B receptor signaling contributes to priapism through HIFâ€1α mediated reduction of PDE5 gene expression. FASEB Journal, 2014, 28, 2725-2735.	0.2	34
184	Hybrid nanoarchitecture of rutile TiO2 nanoneedle/graphene for advanced lithium-ion batteries. Solid State Ionics, 2015, 269, 44-50.	1.3	34
185	Self-supported Ni decorated NiO nanoflake arrays as promising cathode materials of hybrid batteries. Materials Research Bulletin, 2016, 76, 113-117.	2.7	34
186	A 3D conductive network with high loading Li ₂ S@C for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 19358-19363.	5.2	34
187	Construction of 1Tâ€MoSe ₂ /TiC@C Branch–Core Arrays as Advanced Anodes for Enhanced Sodium Ion Storage. ChemSusChem, 2020, 13, 1575-1581.	3.6	34
188	Ultrafast Synthesis of Iâ€Rich Lithium Argyrodite Glass–Ceramic Electrolyte with High Ionic Conductivity. Advanced Materials, 2022, 34, e2107346.	11.1	34
189	Microstructure and infrared reflectance modulation properties in DC-sputtered tungsten oxide films. Journal of Solid State Electrochemistry, 2011, 15, 2213-2219.	1.2	33
190	Bio-templated Fabrication of Highly Defective Carbon Anchored MnO Anode Materials with High Reversible Capacity. Electrochimica Acta, 2015, 169, 159-167.	2.6	33
191	Li ₂ S ₆ â€Integrated PEOâ€Based Polymer Electrolytes for Allâ€Solidâ€State Lithiumâ€Metal Batteries. Angewandte Chemie, 2021, 133, 17842-17847.	1.6	33
192	Synthesis of hierarchical porous carbon from metal carbonates towards high-performance lithium storage. Green Chemistry, 2018, 20, 1484-1490.	4.6	32
193	Functionalized N-Doped Carbon Nanotube Arrays: Novel Binder-Free Anodes for Sodium-Ion Batteries. ACS Applied Materials & Diterfaces, 2019, 11, 18662-18670.	4.0	32
194	Exploring NiCo2S4 nanosheets arrays by hydrothermal conversion for enhanced high-rate batteries. Journal of Energy Chemistry, 2019, 35, 132-137.	7.1	32
195	Topological Insulatorâ€Assisted MoSe ₂ /Bi ₂ Se ₃ Heterostructure: Achieving Fast Reaction Kinetics Toward High Rate Sodiumâ€Ion Batteries. ChemElectroChem, 2021, 8, 697-704.	1.7	32
196	Mesoporous Fe ₃ O ₄ @C submicrospheres evolved by a novel self-corrosion mechanism for high-performance lithium-ion batteries. New Journal of Chemistry, 2014, 38, 2428-2434.	1.4	31
197	Integrated reduced graphene oxide multilayer/Li composite anode for rechargeable lithium metal batteries. RSC Advances, 2016, 6, 11657-11664.	1.7	31
198	Ionic Liquid-Impregnated ZIF-8/Polypropylene Solid-like Electrolyte for Dendrite-free Lithium-Metal Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 6859-6868.	4.0	31

#	Article	IF	CITATIONS
199	H ₂ O-induced self-propagating synthesis of hierarchical porous carbon: a promising lithium storage material with superior rate capability and ultra-long cycling life. Journal of Materials Chemistry A, 2017, 5, 18221-18229.	5.2	30
200	Ultrafast and durable lithium ion storage enabled by intertwined carbon nanofiber/Ti2Nb10O29 core-shell arrays. Electrochimica Acta, 2020, 332, 135433.	2.6	30
201	Nitrogen doped vertical graphene as metal-free electrocatalyst for hydrogen evolution reaction. Materials Research Bulletin, 2021, 134, 111094.	2.7	30
202	Recent progress on the phase modulation of molybdenum disulphide/diselenide and their applications in electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 1418-1428.	5.2	30
203	Novel Construction of Heterostructured FeTiO ₃ /Fe _{2.75} Ti _{0.25} O ₄ Mesoporous Nanodisks with Both High Capacity and Stable Cycling Life for Lithium-Ion Storage. ACS Applied Energy Materials, 2021, 4. 10380-10390.	2.5	29
204	A cleverly designed asymmetrical composite electrolyte via in-situ polymerization for high-performance, dendrite-free solid state lithium metal battery. Chemical Engineering Journal, 2022, 435, 135030.	6.6	29
205	Mesoporous cobalt monoxide nanorods grown on reduced graphene oxide nanosheets with high lithium storage performance. Electrochimica Acta, 2014, 138, 376-382.	2.6	28
206	Anchoring SnS ₂ on TiC/C Backbone to Promote Sodium Ion Storage by Phosphate Ion Doping. Small, 2020, 16, e2004072.	5.2	28
207	Design of pyrite/carbon nanospheres as high-capacity cathode for lithium-ion batteries. Journal of Energy Chemistry, 2020, 40, 1-6.	7.1	27
208	Integrated photo-chargeable electrochromic energy-storage devices. Electrochimica Acta, 2020, 345, 136235.	2.6	27
209	High Performance Single-Crystal Ni-Rich Cathode Modification via Crystalline LLTO Nanocoating for All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 726-735.	4.0	27
210	Facile and scalable synthesis of nanosized core–shell Li ₂ S@C composite for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 16653-16660.	5.2	26
211	Verticalâ€Aligned Li ₂ S–Graphene Encapsulated within a Carbon Shell as a Free‧tanding Cathode for Lithium–Sulfur Batteries. Chemistry - A European Journal, 2017, 23, 11169-11174.	1.7	26
212	Synthesis of boron carbide nanoflakes via a bamboo-based carbon thermal reduction method. Journal of Alloys and Compounds, 2013, 581, 128-132.	2.8	25
213	Graphene oxide modified metallic lithium electrode and its electrochemical performances in lithium–sulfur full batteries and symmetric lithium–metal coin cells. RSC Advances, 2016, 6, 66161-66168.	1.7	25
214	Core-shell structure of porous silicon with nitrogen-doped carbon layer for lithium-ion batteries. Materials Research Bulletin, 2018, 108, 170-175.	2.7	25
215	N-doped carbon nanofibers arrays as advanced electrodes for supercapacitors. Journal of Materials Science and Technology, 2020, 55, 144-151.	5.6	25
216	Rational synthesis of Cr0.5Nb24.5O62 microspheres as high-rate electrodes for lithium ion batteries. Journal of Colloid and Interface Science, 2020, 562, 511-517.	5.0	25

#	Article	IF	CITATIONS
217	Application of immune checkpoint inhibitors in EGFR-mutant non-small-cell lung cancer: from bed to bench. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592093033.	1.4	25
218	Self-supported hierarchical porous Li4Ti5O12/carbon arrays for boosted lithium ion storage. Journal of Energy Chemistry, 2021, 54, 754-760.	7.1	25
219	Porous Polyamide Skeleton-Reinforced Solid-State Electrolyte: Enhanced Flexibility, Safety, and Electrochemical Performance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 11018-11025.	4.0	25
220	Binder-free carbon fiber/TiNb2O7 composite electrode as superior high-rate anode for lithium ions batteries. Chinese Chemical Letters, 2017, 28, 2219-2222.	4.8	24
221	Robust Li ₆ PS ₅ I Interlayer to Stabilize the Tailored Electrolyte Li _{9.95} SnP ₂ Scsub>11.95F _{0.05} /Li Metal Interface. ACS Applied Materials & Samp; Interfaces, 2021, 13, 30739-30745.	4.0	24
222	In-situ generated Li3N/Li-Al alloy in reduced graphene oxide framework optimizing ultra-thin lithium metal electrode for solid-state batteries. Energy Storage Materials, 2022, 49, 546-554.	9.5	24
223	Self-supported porous CoO semisphere arrays as binder-free electrodes for high-performance lithium ion batteries. Materials Research Bulletin, 2016, 73, 125-129.	2.7	23
224	Toast-like porous carbon derived from one-step reduction of CaCO3 for electrochemical lithium storage. Carbon, 2018, 130, 559-565.	5.4	23
225	Heterovalent Cation Substitution to Enhance the Ionic Conductivity of Halide Electrolytes. ACS Applied Materials & Electrolytes. ACS Applied Materials & Electrolytes. ACS	4.0	23
226	Carbon fiber-incorporated sulfur/carbon ternary cathode for lithiumâ€"sulfur batteries with enhanced performance. Journal of Solid State Electrochemistry, 2017, 21, 1203-1210.	1.2	22
227	Popcorn-like niobium oxide with cloned hierarchical architecture as advanced anode for solid-state lithium ion batteries. Energy Storage Materials, 2020, 25, 695-701.	9.5	22
228	Potassium Hexafluorophosphate Additive Enables Stable Lithium–Sulfur Batteries. ACS Applied Materials & Diterfaces, 2020, 12, 56017-56026.	4.0	22
229	Sodium-storage behavior of electron-rich element-doped amorphous carbon. Applied Physics Reviews, 2021, 8, .	5.5	22
230	Performance Enhancement of a Sulfur/Carbon Cathode by Polydopamine as an Efficient Shell for Highâ€Performance Lithium–Sulfur Batteries. Chemistry - A European Journal, 2017, 23, 10610-10615.	1.7	21
231	Exploring the Stability Effect of the Co-Substituted P2-Na _{0.67} [Mn _{0.67} Ni _{0.33}]O ₂ Cathode for Liquid- and Solid-State Sodium-Ion Batteries. ACS Applied Materials & Solid-State Sodium-Ion Batteries.	4.0	21
232	A novel multielement nanocomposite with ultrahigh rate capacity and durable performance for sodium-ion battery anodes. Journal of Materials Chemistry A, 2020, 8, 11598-11606.	5.2	21
233	Supercritical fluid assisted synthesis of titanium carbide particles embedded in mesoporous carbon for advanced Li-S batteries. Journal of Alloys and Compounds, 2017, 706, 227-233.	2.8	20
234	LiBr–LiFâ€Rich Solid–Electrolyte Interface Layer on Lithiophilic 3D Framework for Enhanced Lithium Metal Anode. Small Structures, 2022, 3, .	6.9	20

#	Article	IF	CITATIONS
235	Bioinspired large-scale production of multidimensional high-rate anodes for both liquid & Diquid & Solid-state lithium ion batteries. Journal of Materials Chemistry A, 2019, 7, 22958-22966.	5.2	19
236	Boosting fast lithium ion storage of Li4Ti5O12 by synergistic effect of vertical graphene and nitrogen doping. Journal of Energy Chemistry, 2020, 51, 372-377.	7.1	19
237	Singleâ€Crystalâ€Layered Niâ€Rich Oxide Modified by Phosphate Coating Boosting Interfacial Stability of Li ₁₀ SnP ₂ S ₁₂ â€Based Allâ€Solidâ€State Li Batteries. Small, 2021, 17, e2103830.	5.2	19
238	Enhanced Liâ€Storage of Ni ₃ S ₂ Nanowire Arrays with Nâ€Doped Carbon Coating Synthesized by Oneâ€Step CVD Process and Investigated Via Ex Situ TEM. Small, 2019, 15, e1904433.	5.2	18
239	TiC/C core/shell nanowires arrays as advanced anode of sodium ion batteries. Chinese Chemical Letters, 2020, 31, 846-850.	4.8	18
240	Porous Composite Gel Polymer Electrolyte with Interfacial Transport Pathways for Flexible Quasi Solid Lithium-Ion Batteries. ACS Applied Materials & Solid Lithium-Ion Batteries. ACS Applied Materials & Solid Lithium-Ion Batteries.	4.0	18
241	Green and Low-Temperature Synthesis of Foam-like Hierarchical Porous Carbon from CO ₂ as Superior Lithium Storage Material. ACS Applied Energy Materials, 2018, 1, 7123-7129.	2.5	17
242	Supercritical CO ₂ -Fluid-Assisted Synthesis of TiO ₂ Quantum Dots/Reduced Graphene Oxide Composites for Outstanding Sodium Storage Capability. ACS Applied Energy Materials, 2018, 1, 7213-7219.	2.5	17
243	Biological Metabolism Synthesis of Metal Oxides Nanorods from Bacteria as a Biofactory toward Highâ€Performance Lithiumâ€lon Battery Anodes. Small, 2019, 15, e1902032.	5.2	17
244	Fluorinated Interface Layer with Embedded Zinc Nanoparticles for Stable Lithium-Metal Anodes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 17690-17698.	4.0	17
245	Integrated carbon nanospheres arrays as anode materials for boosted sodium ion storage. Green Energy and Environment, 2018, 3, 50-55.	4.7	16
246	Synergistic Doping and Intercalation: Realizing Deep Phase Modulation on MoS 2 Arrays for Highâ€Efficiency Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 16435-16442.	1.6	16
247	Functionally Modified Polyolefin-Based Separators for Lithium-Sulfur Batteries: Progress and Prospects. Frontiers in Energy Research, 2020, 8, .	1.2	16
248	Building superior layered oxide cathode via rational surface engineering for both liquid & mp; solid-state sodium ion batteries. Chemical Engineering Journal, 2021, 421, 127788.	6.6	16
249	Graphene foam supported LiFePO4 nanosheets composite as advanced cathode for lithium ion batteries. Materials Research Bulletin, 2018, 101, 205-209.	2.7	15
250	Atomic Layer Deposition-Assisted Construction of Binder-Free Ni@N-Doped Carbon Nanospheres Films as Advanced Host for Sulfur Cathode. Nano-Micro Letters, 2019, 11, 64.	14.4	15
251	Graphene/TiO2 decorated N-doped carbon foam as 3D porous current collector for high loading sulfur cathode. Materials Research Bulletin, 2021, 135, 111129.	2.7	15
252	Biofunctionalized "Kiwifruitâ€Assembly―of Oxidoreductases in Mesoporous ZnO/Carbon Nanoparticles for Efficient Asymmetric Catalysis. Advanced Materials, 2018, 30, 1705443.	11,1	14

#	Article	IF	Citations
253	Bi-containing Electrolyte Enables Robust and Li Ion Conductive Solid Electrolyte Interphase for Advanced Lithium Metal Anodes. Frontiers in Chemistry, 2020, 7, 952.	1.8	14
254	A solar-powered multifunctional and multimode electrochromic smart window based on WO3/Prussian blue complementary structure. Sustainable Materials and Technologies, 2022, 31, e00372.	1.7	14
255	Regulation of the Interfaces Between Argyrodite Solid Electrolytes and Lithium Metal Anode. Frontiers in Chemistry, 2022, 10, 837978.	1.8	14
256	Graphene foam supported V2O5/N-C core/shell arrays as advanced cathode for lithium ion storage. Journal of Alloys and Compounds, 2018, 735, 2022-2029.	2.8	13
257	Implanting Ni into N-doped puffed carbon: A new advanced electrocatalyst for oxygen evolution reaction. Chinese Chemical Letters, 2020, 31, 2230-2234.	4.8	13
258	Selfâ€Healing Properties of Alkali Metals under "Highâ€Energy Conditions―in Batteries. Advanced Energy Materials, 2021, 11, 2100470.	10.2	13
259	Efficacy and Safety of First-Line Treatment Strategies for Anaplastic Lymphoma Kinase-Positive Non-Small Cell Lung Cancer: A Bayesian Network Meta-Analysis. Frontiers in Oncology, 2021, 11, 754768.	1.3	13
260	A Novel Ethanol-Mediated Synthesis of Superionic Halide Electrolytes for High-Voltage All-Solid-State Lithium–Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 29844-29855.	4.0	13
261	Argyrodite Solid Electrolyte-Integrated Ni-Rich Oxide Cathode with Enhanced Interfacial Compatibility for All-Solid-State Lithium Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33361-33369.	4.0	13
262	\hat{l}^2 -Cyclodextrin-modified porous ceramic membrane with enhanced ionic conductivity and thermal stability for lithium-ion batteries. Ionics, 2020, 26, 173-182.	1.2	12
263	Empowering polypropylene separator with enhanced polysulfide adsorption and reutilization ability for high-performance Li-S batteries. Materials Research Bulletin, 2021, 134, 111108.	2.7	12
264	Transient Receptor Potential Channels and Chronic Airway Inflammatory Diseases: A Comprehensive Review. Lung, 2018, 196, 505-516.	1.4	11
265	Porous TiO2/Co9S8 core-branch nanosheet arrays with high electrocatalytic activity for a hydrogen evolution reaction. Nanotechnology, 2019, 30, 404001.	1.3	11
266	Controllable Synthesis of Copper Oxide/Carbon Core/Shell Nanowire Arrays and Their Application for Electrochemical Energy Storage. Nanomaterials, 2015, 5, 1610-1619.	1.9	10
267	Severe asthma and asthma-COPD overlap: a double agent or identical twins?. Journal of Thoracic Disease, 2017, 9, 4798-4805.	0.6	10
268	High-performance Na3V2(PO4)2F2.5O0.5 cathode: Hybrid reaction mechanism study via ex-situ XRD and sodium storage properties in solid-state batteries. Chemical Engineering Journal, 2021, 423, 130310.	6.6	10
269	Yttrium stabilized argyrodite solid electrolyte with enhanced ionic conductivity and interfacial stability for all-solid-state batteries. Journal of Power Sources, 2022, 543, 231846.	4.0	10
270	Tailored integrated electrodes of graphene foam supported FeS ₂ as cathode for enhanced Li ion storage performance. Materials Technology, 2017, 32, 888-892.	1.5	9

#	Article	IF	CITATIONS
271	Synthesis of carbon nanoflake/sulfur arrays as cathode materials of lithium-sulfur batteries. Functional Materials Letters, 2018, 11, 1840001.	0.7	9
272	Rational construction of cross-linked porous nickel arrays for efficient oxygen evolution reaction. Chinese Journal of Catalysis, 2019, 40, 1063-1069.	6.9	9
273	Lithium Sulfide as Cathode Materials for Lithium-Ion Batteries: Advances and Challenges. Journal of Chemistry, 2020, 2020, 1-17.	0.9	9
274	Recent advance on Coâ€based materials for polysulfide catalysis toward promoted lithiumâ€sulfur batteries. Nano Select, 2022, 3, 298-319.	1.9	9
275	High Capacity and Superior Rate Performances Coexisting in Carbon-Based Sodium-Ion Battery Anode. Research, 2019, 2019, 6930294.	2.8	9
276	Co-construction of advanced sulfur host by implanting titanium carbide into Aspergillus niger spore carbon. Chinese Chemical Letters, 2022, 33, 3981-3986.	4.8	9
277	New carbon for electrochemical energy storage and conversion. Functional Materials Letters, 2019, 12, 1950049.	0.7	8
278	Fabrication of three-dimensional porous cobalt network-supported cobalt oxides nanoflake arrays for electrochemical energy storage. Materials Technology, 2016, 31, 532-536.	1.5	7
279	Sand/carbon composites as low-cost lithium storage materials with superior electrochemical performance. New Journal of Chemistry, 2019, 43, 4123-4129.	1.4	7
280	Confined Polysulfides in N-Doped 3D-CNTs Network for High Performance Lithium-Sulfur Batteries. Materials, 2021, 14, 6131.	1.3	7
281	<i>In Situ</i> Synthesis of a Si/CNTs/C Composite by Directly Reacting Magnesium Silicide with Lithium Carbonate for Enhanced Lithium Storage Capability. Energy & En	2.5	7
282	Three-dimensional interconnected cobalt oxide-carbon hollow spheres arrays as cathode materials for hybrid batteries. Progress in Natural Science: Materials International, 2016, 26, 253-257.	1.8	6
283	Carbon nanotubes branch on cobalt oxide nanowires core as enhanced high-rate cathodes of alkaline batteries. Ceramics International, 2018, 44, 16791-16798.	2.3	6
284	First-Line Treatment Options for PD-L1–Negative Non-Small Cell Lung Cancer: A Bayesian Network Meta-Analysis. Frontiers in Oncology, 2021, 11, 657545.	1.3	6
285	Optimizing quasi-solid-state sodium storage performance of Na3V2(PO4)2F2.5O0.5 cathode by structural design plus nitrogen doping. Chemical Engineering Journal, 2022, 433, 133557.	6.6	6
286	Improved Lithium Storage Capability of Si Anode by Ball-Milling Produced Graphitic Carbon Sheet and Fe3O4 Nanoparticles. Journal of Electronic Materials, 2022, 51, 4780-4789.	1.0	6
287	Tremella-like porous carbon derived from one-step electroreduction of molten carbonates with superior rate capability for sodium-ion batteries. Ionics, 2020, 26, 2899-2907.	1.2	4
288	Milling Time-Dependent Lithium/Sodium Storage Performance of Carbons Synthesized by a Mechanochemical Reaction. Energy & Samp; Fuels, 2021, 35, 4596-4603.	2.5	4

#	Article	IF	CITATIONS
289	A Three-Dimensional Electrospun Li6.4La3Zr1.4Ta0.6O12–Poly (Vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock Batteries. Frontiers in Chemistry, 2021, 9, 751476.	2 10 Tf 50 1.8	747 Td (Fl 4
290	Carbon cloth/cobalt oxide integrated electrode as flexible cathode of alkaline batteries. Materials Technology, 2016, 31, 492-496.	1.5	3
291	Anti-IgE therapy as novel target for asthma-COPD overlap syndrome: More questions before celebration. Journal of Asthma, 2017, 54, 113-113.	0.9	3
292	Sodium-Ion Batteries: C-Plasma of Hierarchical Graphene Survives SnS Bundles for Ultrastable and High Volumetric Na-Ion Storage (Adv. Mater. 49/2018). Advanced Materials, 2018, 30, 1870380.	11.1	3
293	Oxygen Evolution: FeN4 Sites Embedded into Carbon Nanofiber Integrated with Electrochemically Exfoliated Graphene for Oxygen Evolution in Acidic Medium (Adv. Energy Mater. 26/2018). Advanced Energy Materials, 2018, 8, 1870119.	10.2	3
294	Grain-boundary corrosion of nickel-based alloy by synchrotron radiation technology. Surface Innovations, 2019, 7, 278-283.	1.4	3
295	Rational synthesis of MoS ₂ nanosheet arrays on carbon fibres for sodium ion storage. Materials Technology, 2020, 35, 509-514.	1.5	3
296	Risk of COVID-19 in Patients With Cancer. JAMA Oncology, 2020, 6, 1469.	3.4	3
297	Evolution of transbronchial needle aspiration technique. Journal of Thoracic Disease, 2015, 7, S224-30.	0.6	3
298	Magnetic resonance imaging of patients with airway stents. Journal of Thoracic Disease, 2018, 10, 5939-5945.	0.6	2
299	Highly porous Li ₄ Ti ₅ O ₁₂ films as high-rate electrodes for fast lithium ion storage. Materials Technology, 2020, 35, 635-641.	1.5	2
300	The Effect of Compaction Density of Sulfur/Carbon Cathodes on the Practical Application of Li-S Pouch Cells. Journal of Electronic Materials, 2022, 51, 4115-4124.	1.0	2
301	Dual immune checkpoint blockade for non-small cell lung cancer patients with PD-L1 high expression: calling an end?. Translational Lung Cancer Research, 2021, 10, 3858-3860.	1.3	1
302	Fabrication of highly ordered porous nickel phosphide films and their application as anode for lithium ion batteries. , 2010, , .		0
303	Frontispiece: Recent Developments of All-Solid-State Lithium Secondary Batteries with Sulfide Inorganic Electrolytes. Chemistry - A European Journal, 2018, 24, .	1.7	O
304	Frontispiece: Porous Carbon Hosts for Lithium–Sulfur Batteries. Chemistry - A European Journal, 2019, 25, .	1.7	0
305	Synthesis of Carbon Nanoflake/Sulfur Arrays as Cathode Materials of Lithium–Sulfur Batteries. , 2021, , 77-86.		О