Wenqiang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5255428/publications.pdf

Version: 2024-02-01

37	2,623 citations	19 h-index	330143 37 g-index
papers	Citations	II-IIIQEA	g-muex
38 all docs	38 docs citations	38 times ranked	3134 citing authors

#	Article	IF	CITATIONS
1	Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature, 2016, 537, 558-562.	27.8	538
2	Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature, 2016, 537, 553-557.	27.8	516
3	Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Nature Cell Biology, 2018, 20, 620-631.	10.3	292
4	Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1. Nature, 2018, 564, 136-140.	27.8	186
5	Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing. Cell Discovery, 2016, 2, 16010.	6.7	165
6	Protein Expression Landscape of Mouse Embryos during Pre-implantation Development. Cell Reports, 2017, 21, 3957-3969.	6.4	135
7	FTO mediates LINE1 m ⁶ A demethylation and chromatin regulation in mESCs and mouse development. Science, 2022, 376, 968-973.	12.6	97
8	Nuclear m6A reader YTHDC1 regulates the scaffold function of LINE1 RNA in mouse ESCs and early embryos. Protein and Cell, 2021, 12, 455-474.	11.0	84
9	Inhibition of Aberrant DNA Re-methylation Improves Post-implantation Development of Somatic Cell Nuclear Transfer Embryos. Cell Stem Cell, 2018, 23, 426-435.e5.	11.1	72
10	Dosage effects of ZP2 and ZP3 heterozygous mutations cause human infertility. Human Genetics, 2017, 136, 975-985.	3.8	63
11	Dux-Mediated Corrections of Aberrant H3K9ac during 2-Cell Genome Activation Optimize Efficiency of Somatic Cell Nuclear Transfer. Cell Stem Cell, 2021, 28, 150-163.e5.	11.1	54
12	Distinct H3K9me3 and DNA methylation modifications during mouse spermatogenesis. Journal of Biological Chemistry, 2019, 294, 18714-18725.	3.4	38
13	Maternal Sall4 Is Indispensable for Epigenetic Maturation of Mouse Oocytes. Journal of Biological Chemistry, 2017, 292, 1798-1807.	3.4	37
14	Dcaf11 activates Zscan4-mediated alternative telomere lengthening in early embryos and embryonic stem cells. Cell Stem Cell, 2021, 28, 732-747.e9.	11.1	30
15	Nuclear Exosome Targeting Complex Core Factor Zcchc8 Regulates the Degradation of LINE1 RNA in Early Embryos and Embryonic Stem Cells. Cell Reports, 2019, 29, 2461-2472.e6.	6.4	28
16	N6-methyladenosine regulates maternal RNA maintenance in oocytes and timely RNA decay during mouse maternal-to-zygotic transition. Nature Cell Biology, 2022, 24, 917-927.	10.3	28
17	Unique features of mutations revealed by sequentially reprogrammed induced pluripotent stem cells. Nature Communications, 2015, 6, 6318.	12.8	26
18	Reduced Self-Diploidization and Improved Survival of Semi-cloned Mice Produced from Androgenetic Haploid Embryonic Stem Cells through Overexpression of Dnmt3b. Stem Cell Reports, 2018, 10, 477-493.	4.8	24

#	Article	IF	CITATIONS
19	Identification and rescue of a novel TUBB8 mutation that causes the first mitotic division defects and infertility. Journal of Assisted Reproduction and Genetics, 2020, 37, 2713-2722.	2.5	22
20	Asymmetric Reprogramming Capacity of Parental Pronuclei in Mouse Zygotes. Cell Reports, 2014, 6, 1008-1016.	6.4	21
21	Altered sperm tsRNAs in aged male contribute to anxietyâ€like behavior in offspring. Aging Cell, 2021, 20, e13466.	6.7	20
22	Accurate annotation of accessible chromatin in mouse and human primordial germ cells. Cell Research, 2018, 28, 1077-1089.	12.0	17
23	IP3R-mediated Ca2+ signals govern hematopoietic and cardiac divergence of Flk1+ cells via the calcineurin–NFATc3–Etv2 pathway. Journal of Molecular Cell Biology, 2017, 9, 274-288.	3.3	16
24	Pre-pregnancy exposure to fine particulate matter (PM2.5) increases reactive oxygen species production in oocytes and decrease litter size and weight in mice. Environmental Pollution, 2021, 268, 115858.	7.5	15
25	Allele-specific H3K9me3 and DNA methylation co-marked CpG-rich regions serve as potential imprinting control regions in pre-implantation embryo. Nature Cell Biology, 2022, 24, 783-792.	10.3	14
26	Aberrant H3K4me3 modification of epiblast genes of extraembryonic tissue causes placental defects and implantation failure in mouse IVF embryos. Cell Reports, 2022, 39, 110784.	6.4	12
27	Nucleosome organizations in induced pluripotent stem cells reprogrammed from somatic cells belonging to three different germ layers. BMC Biology, 2014, 12, 109.	3.8	11
28	Melatonin supplementation in the culture medium rescues impaired glucose metabolism in IVF mice offspring. Journal of Pineal Research, 2022, 72, e12778.	7.4	11
29	Direct induction of neural progenitor cells transiently passes through a partially reprogrammed state. Biomaterials, 2017, 119, 53-67.	11.4	10
30	Genome transfer for the prevention of female infertility caused by maternal gene mutation. Journal of Genetics and Genomics, 2020, 47, 311-319.	3.9	9
31	Epigenetic regulation of cell fate transition: learning from early embryo development and somatic cell reprogramming. Biology of Reproduction, 2022, 107, 183-195.	2.7	7
32	Additive-effect pattern of both ZP2 and ZP3 in human and mouse. Human Genetics, 2017, 136, 1493-1495.	3.8	5
33	Pwp1 regulates telomere length by stabilizing shelterin complex and maintaining histone H4K20 trimethylation. Cell Discovery, 2019, 5, 47.	6.7	5
34	Precise allele-specific genome editing by spatiotemporal control of CRISPR-Cas9 via pronuclear transplantation. Nature Communications, 2020, 11 , 4593.	12.8	5
35	High throughput sequencing identifies an imprinted gene, Grb10, associated with the pluripotency state in nuclear transfer embryonic stem cells. Oncotarget, 2017, 8, 47344-47355.	1.8	5
36	A DNA methylation state transition model reveals the programmed epigenetic heterogeneity in human pre-implantation embryos. Genome Biology, 2020, 21, 277.	8.8	3

#	Article	IF	CITATIONS
37	Differential Transcriptomes and Methylomes of Trophoblast Stem Cells From Naturally-Fertilized and Somatic Cell Nuclear-Transferred Embryos. Frontiers in Cell and Developmental Biology, 2021, 9, 664178.	3.7	O