
Annamaria Celli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5255061/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Upgrading grape pomace contained ethanol into hexanoic acid, fuel additives and a sticky polyhydroxyalkanoate: an effective alternative to ethanol distillation. Green Chemistry, 2022, 24, 2882-2892.	4.6	10
2	Bio-based semi-crystalline PEF: Temperature dependence of the constrained amorphous interphase and amorphous chain mobility in relation to crystallization. Polymer, 2022, 247, 124771.	1.8	8
3	Current Advances in the Sustainable Conversion of 5â€Hydroxymethylfurfural into 2,5â€Furandicarboxylic Acid. ChemSusChem, 2022, 15, .	3.6	35
4	Enzymatic Degradation of the Most Common Aliphatic Bio-Polyesters and Evaluation of the Mechanisms Involved: An Extended Study. Polymers, 2022, 14, 1850.	2.0	32
5	Valorization of Ferulic Acid from Agro-Industrial by-Products for Application in Agriculture. Polymers, 2022, 14, 2874.	2.0	2
6	Water Vapor Sorption and Diffusivity in Bio-Based Poly(ethylene vanillate)—PEV. Polymers, 2021, 13, 524.	2.0	8
7	Integrated Efforts for the Valorization of Sweet Potato By-Products within a Circular Economy Concept: Biocomposites for Packaging Applications Close the Loop. Polymers, 2021, 13, 1048.	2.0	13
8	Bio-Based Furan-Polyesters/Graphene Nanocomposites Prepared by In Situ Polymerization. Polymers, 2021, 13, 1377.	2.0	3
9	Monomers, Materials and Energy from Coffee By-Products: A Review. Sustainability, 2021, 13, 6921.	1.6	20
10	Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides. International Journal of Biological Macromolecules, 2021, 183, 1514-1539.	3.6	16
11	End of Life of Biodegradable Plastics: Composting versus Re/Upcycling. ChemSusChem, 2021, 14, 4167-4175.	3.6	49
12	Valorization of wheat bran agro-industrial byproduct as an upgrading filler for mycelium-based composite materials. Industrial Crops and Products, 2021, 170, 113742.	2.5	21
13	MXD6 in film manufacturing: State of the art and recent advances in the synthesis and characterization of new copolyamides. Journal of Plastic Film and Sheeting, 2020, 36, 16-37.	1.3	2
14	Cascade strategies for the full valorisation of Garganega white grape pomace towards bioactive extracts and bio-based materials. PLoS ONE, 2020, 15, e0239629.	1.1	7
15	Elastomeric/antibacterial properties in novel random Ricinus communis based-copolyesters. Polymer Testing, 2020, 90, 106719.	2.3	4
16	Eco-Conversion of Two Winery Lignocellulosic Wastes into Fillers for Biocomposites: Vine Shoots and Wine Pomaces. Polymers, 2020, 12, 1530.	2.0	18
17	Chain extender effect of 3-(4-hydroxyphenyl)propionic acid/layered double hydroxide in biopolyesters containing the succinate moiety. New Journal of Chemistry, 2020, 44, 10127-10136.	1.4	3
18	State-of-the-Art Production Chains for Peas, Beans and Chickpeas—Valorization of Agro-Industrial Residues and Applications of Derived Extracts. Molecules, 2020, 25, 1383.	1.7	55

#	Article	IF	CITATIONS
19	Organo-modified LDH fillers endowing multi-functionality to bio-based poly(butylene succinate): An extended study from the laboratory to possible market. Applied Clay Science, 2020, 188, 105502.	2.6	21
20	From winery waste to bioactive compounds and new polymeric biocomposites: A contribution to the circular economy concept. Journal of Advanced Research, 2020, 24, 1-11.	4.4	76
21	Polymorphism and Multiple Melting Behavior of Bio-Based Poly(propylene 2,5-furandicarboxylate). Biomacromolecules, 2020, 21, 2622-2634.	2.6	32
22	A Novel Approach for the Synthesis of Thermoâ€Responsive Coâ€Polyesters Incorporating Reversible Diels–Alder Adducts. Macromolecular Chemistry and Physics, 2019, 220, 1900247.	1.1	12
23	Insights into the Synthesis of Poly(ethylene 2,5-Furandicarboxylate) from 2,5-Furandicarboxylic Acid: Steps toward Environmental and Food Safety Excellence in Packaging Applications. Industrial & Engineering Chemistry Research, 2019, 58, 8955-8962.	1.8	45
24	Olive Mill Wastewater Valorization in Multifunctional Biopolymer Composites for Antibacterial Packaging Application. International Journal of Molecular Sciences, 2019, 20, 2376.	1.8	10
25	A new valorization route for Olive Mill wastewater: Improvement of durability of PP and PBS composites through multifunctional hybrid systems. Journal of Environmental Chemical Engineering, 2019, 7, 103026.	3.3	12
26	Outstanding chain-extension effect and high UV resistance of polybutylene succinate containing amino-acid-modified layered double hydroxides. Beilstein Journal of Nanotechnology, 2019, 10, 684-695.	1.5	10
27	Temperature-induced polymorphism in bio-based poly(propylene 2,5-furandicarboxylate). Thermochimica Acta, 2019, 677, 186-193.	1.2	17
28	Thia-Michael Reaction for a Thermostable Itaconic-Based Monomer and the Synthesis of Functionalized Biopolyesters. ACS Sustainable Chemistry and Engineering, 2019, 7, 5553-5559.	3.2	10
29	Strategy to improve PA6 performances by melt compounding. Polymer Testing, 2018, 67, 84-91.	2.3	11
30	Retting Process as a Pretreatment of Natural Fibers for the Development of Polymer Composites. Springer Series on Polymer and Composite Materials, 2018, , 97-135.	0.5	34
31	Solidâ€state polymerization process for the preparation of poly(cyclohexaneâ€1,4â€dimethylene) Tj ETQq1 1 C Engineering and Science, 2018, 58, 1981-1986.).784314 r 1.5	gBT /Overloci 1
32	Dual chain extension effect and antibacterial properties of biomolecules interleaved within LDH dispersed into PBS by <i>in situ</i> polymerization. Dalton Transactions, 2018, 47, 3155-3165.	1.6	21
33	A new route of valorization of rice endosperm by-product: Production of polymeric biocomposites. Composites Part B: Engineering, 2018, 139, 195-202.	5.9	29
34	Biobased Vanillic Acid and Ricinoleic Acid: Building Blocks for Fully Renewable Copolyesters. Journal of Renewable Materials, 2018, 6, 126-135.	1.1	32
35	Composites for « white and green » solutions: Coupling UV resistance and chain extension effect from poly(butylene succinate) and layered double hydroxides composites. Journal of Solid State Chemistry, 2018, 268, 9-15.	1.4	9
36	Enzymatically treated curaua fibers in poly(butylene succinate)-based biocomposites. Journal of Environmental Chemical Engineering, 2018, 6, 4452-4458.	3.3	20

#	Article	IF	CITATIONS
37	A research challenge vision regarding management of agricultural waste in a circular bio-based economy. Critical Reviews in Environmental Science and Technology, 2018, 48, 614-654.	6.6	189
38	Bio-Based PA11/Graphene Nanocomposites Prepared by In Situ Polymerization. Journal of Nanoscience and Nanotechnology, 2018, 18, 1169-1175.	0.9	16
39	Sharp and strong "Brill transition―of poly(hexamethylene dithiocarbonate). Polymer, 2017, 113, 267-273.	1.8	8
40	Chain extender effect of 3-(4-hydroxyphenyl)propionic acid/layered double hydroxide in PBS bionanocomposites. European Polymer Journal, 2017, 94, 20-32.	2.6	15
41	Effect of telechelic ionic groups on the dispersion of organically modified clays in bisphenol A polycarbonate nanocomposites by in-situ polymerization using activated carbonates. EXPRESS Polymer Letters, 2017, 11, 396-405.	1.1	8
42	A new approach to the synthesis of monomers and polymers incorporating furan/maleimide Diels-Alder adducts. AIP Conference Proceedings, 2016, , .	0.3	4
43	Advances in the synthesis of bio-based aromatic polyesters: novel copolymers derived from vanillic acid and Îμ-caprolactone. Polymer Chemistry, 2016, 7, 5396-5406.	1.9	46
44	Strategy To Modify the Crystallization Behavior of EVOH32 through Interactions with Low-Molecular-Weight Molecules. Industrial & Engineering Chemistry Research, 2016, 55, 3517-3524.	1.8	13
45	A Sustainable Route to a Terephthalic Acid Precursor. ChemSusChem, 2016, 9, 942-945.	3.6	26
46	Photodegradation of TiO2 composites based on polyesters. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 321, 275-283.	2.0	11
47	Evaluation of the retting process as a pre-treatment of vegetable fibers for the preparation of high-performance polymer biocomposites. Industrial Crops and Products, 2016, 81, 56-65.	2.5	55
48	Chemical recycling of post-consumer compact discs towards novel polymers for powder coating applications. RSC Advances, 2016, 6, 31462-31469.	1.7	9
49	Multicomponent reinforcing system for poly(butylene succinate): Composites containing poly(l-lactide) electrospun mats loaded with graphene. Polymer Testing, 2016, 50, 283-291.	2.3	35
50	Poly(butylene succinate) bionanocomposites: a novel bio-organo-modified layered double hydroxide for superior mechanical properties. RSC Advances, 2016, 6, 4780-4791.	1.7	27
51	The aliphatic counterpart of PET, PPT and PBT aromatic polyesters: effect of the molecular structure on thermo-mechanical properties. AIMS Molecular Science, 2016, 3, 32-51.	0.3	16
52	Electrospun Fibers Containing Bioâ€Based Ricinoleic Acid: Effect of Amount and Distribution of Ricinoleic Acid Unit on Antibacterial Properties. Macromolecular Materials and Engineering, 2015, 300, 1085-1095.	1.7	8
53	Synergistic effect of dipentaerythritol and montmorillonite in EVOHâ€based nanocomposites. Journal of Applied Polymer Science, 2015, 132, .	1.3	7
54	Use of ionic liquids based on phosphonium salts for preparing biocomposites by <i>in situ</i> polymerization. Journal of Applied Polymer Science, 2015, 132, .	1.3	10

#	Article	IF	CITATIONS
55	Powder coatings for indoor applications from renewable resources and recycled polymers. Journal of Coatings Technology Research, 2015, 12, 555-562.	1.2	18
56	Block and random copolyamides of poly(<i>m</i> â€xylylene adipamide) and poly(hexamethylene) Tj ETQq0 0 molecular structure and phase behavior. Polymer Engineering and Science, 2015, 55, 1475-1484.	0 rgBT /Ove 1.5	rlock 10 Tf 50 8
57	Biocomposites based on poly(butylene succinate) and curaua: Mechanical and morphological properties. Polymer Testing, 2015, 45, 168-173.	2.3	44
58	Fully biobased poly(propylene 2,5-furandicarboxylate) for packaging applications: excellent barrier properties as a function of crystallinity. Green Chemistry, 2015, 17, 4162-4166.	4.6	153
59	Resorcinol: A potentially bio-based building block for the preparation of sustainable polyesters. European Polymer Journal, 2015, 73, 38-49.	2.6	38
60	Synthesis of castor oil-derived polyesters with antimicrobial activity. European Polymer Journal, 2014, 56, 174-184.	2.6	53
61	Nanofibrillated cellulose: surface modification and potential applications. Colloid and Polymer Science, 2014, 292, 5-31.	1.0	363
62	Sustainable polyesters for powder coating applications from recycled PET, isosorbide and succinic acid. Green Chemistry, 2014, 16, 1807-1815.	4.6	59
63	Ageing of PCCD aliphatic polyesters: Effect of stereochemistry and ionic chain terminals. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 292, 42-48.	2.0	6
64	Nanohybrid Materials by Electrospinning. Advances in Polymer Science, 2014, , 87-142.	0.4	12
65	One-pot melt synthesis of resorcinol based polyarylates for UV-stable coatings. Progress in Organic Coatings, 2014, 77, 1701-1708.	1.9	6
66	Laccase-assisted surface functionalization of lignocellulosics. Journal of Molecular Catalysis B: Enzymatic, 2014, 102, 48-58.	1.8	43
67	X-ray diffraction and rheology cross-study of polymer chain penetrating surfactant tethered layered double hydroxide resulting into intermixed structure with polypropylene, poly(butylene)succinate and poly(dimethyl)siloxane. Applied Clay Science, 2014, 100, 102-111.	2.6	22
68	Effect of 1,4â€cyclohexylene units on thermal properties of poly(1,4â€cyclohexylenedimethylene adipate) and similar aliphatic polyesters. Polymer International, 2013, 62, 1210-1217.	1.6	30
69	Aliphatic/aromatic copolyesters containing biobased ï‰-hydroxyfatty acids: Synthesis and structure–property relationships. Polymer, 2013, 54, 3774-3783.	1.8	23
70	Poly(butylene succinate) reinforced with different lignocellulosic fibers. Industrial Crops and Products, 2013, 45, 160-169.	2.5	98
71	Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Progress in Polymer Science, 2013, 38, 1232-1261.	11.8	1,760
72	Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: A review. Journal of Environmental Chemical Engineering, 2013, 1, 97-112.	3.3	225

#	Article	IF	CITATIONS
73	About the end life of novel aliphatic and aliphatic-aromatic (co)polyesters after UV-weathering: Structure/degradability relationships. Polymer Degradation and Stability, 2013, 98, 1321-1328.	2.7	32
74	Poly(butylene succinate)/layered double hydroxide bionanocomposites: Relationships between chemical structure of LDH anion, delamination strategy, and final properties. Journal of Applied Polymer Science, 2013, 130, 1931-1940.	1.3	25
75	Transamidations in melt-mixed MXD6 and PA6I-6T polyamides: 1. Determination of the degree of randomness and block length by 1H-NMR analysis. European Polymer Journal, 2012, 48, 1923-1931.	2.6	15
76	Preparation of new biobased polyesters containing glycerol and their photodurability for outdoor applications. Green Chemistry, 2012, 14, 182-187.	4.6	16
77	Poly(1,4-cyclohexylenedimethylene-1, 4-cyclohexanedicarboxylate): analysis of parameters affecting polymerization and cis-trans isomerization. Polymer International, 2011, 60, 1607-1613.	1.6	26
78	Ecoâ€friendly Poly(butylene 1,4â€cyclohexanedicarboxylate): Relationships Between Stereochemistry and Crystallization Behavior. Macromolecular Chemistry and Physics, 2011, 212, 1524-1534.	1.1	27
79	Synthesis of novel fullerene-functionalized polysulfones for optical limiting applications. Reactive and Functional Polymers, 2011, 71, 641-647.	2.0	14
80	Environmentally Friendly Copolyesters Containing 1,4 yclohexane Dicarboxylate Units, 1â€Relationships Between Chemical Structure and Thermal Properties. Macromolecular Chemistry and Physics, 2010, 211, 1559-1571.	1.1	22
81	New polymers from renewable resources: synthesis, characterization, and photodurability of aliphatic polyesters containing glycerol. Journal of Biotechnology, 2010, 150, 206-206.	1.9	1
82	About Durability of Biodegradable Polymers: Structure/Degradability Relationships. Macromolecular Symposia, 2010, 296, 378-387.	0.4	15
83	Novel copolyesters based on poly(alkylene dicarboxylate)s: 2. Thermal behavior and biodegradation of fully aliphatic random copolymers containing 1,4-cyclohexylene rings. European Polymer Journal, 2009, 45, 2402-2412.	2.6	24
84	Improved dispersion of multi-wall carbon nanotubes in poly(butylene terephthalate) using benzimidazolium surfactants. E-Polymers, 2009, 9, .	1.3	3
85	Poly(1,4â€cyclohexylenedimethylene 1,4â€cyclohexanedicarboxylate): Influence of stereochemistry of 1,4â€cyclohexylene units on the thermal properties. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 619-630.	2.4	43
86	Influence of Molecular Structure and Stereochemistry of the 1,4â€Cyclohexylene Ring on Thermal and Mechanical Behavior of Poly(butylene 1,4â€cyclohexanedicarboxylate). Macromolecular Chemistry and Physics, 2008, 209, 1333-1344.	1.1	52
87	Novel copolyesters based on poly(alkylene dicarboxylate)s: 1. Thermal behavior and biodegradation of aliphatic–aromatic random copolymers. European Polymer Journal, 2008, 44, 3650-3661.	2.6	21
88	Modification of poly(butylene terephthalate) by reaction with 1,4-butane sultone; synthesis and thermal characterization of new telechelic PBT ionomers. E-Polymers, 2008, 8, .	1.3	1
89	The effect of aliphatic chain length on thermal properties of poly(alkylene dicarboxylate)s. E-Polymers, 2007, 7, .	1.3	8
90	Preparation and characterisation of novel random copoly(arylene ether–thioether ketone)s containing 2,2-bis(4-phenylene)propane units. European Polymer Journal, 2007, 43, 2453-2461.	2.6	16

#	Article	IF	CITATIONS
91	Aliphatic poly(alkylene dithiocarbonate)s: Thermal properties and structuralÂcharacteristics of poly(hexamethylene dithiocarbonate). Polymer, 2007, 48, 174-182.	1.8	17
92	Thermal properties of poly(alkylene dicarboxylate)s derived from 1,12-dodecanedioic acid and even aliphatic diols. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1053-1067.	2.4	21
93	Novel random copoly(arylene ether-thioether ketone)s based on 2,2-bis(4-mercaptophenyl)propane and 4,4′-dihydroxybiphenyl: Synthesis and properties. European Polymer Journal, 2006, 42, 2562-2572.	2.6	14
94	Sulfur-containing polymers. Synthesis and properties of novel poly(arylene thioether)s based on 2,2-bis(4-mercaptophenyl)propane. European Polymer Journal, 2005, 41, 1812-1820.	2.6	13
95	Relationships between the molecular architecture, crystallization capacity, and miscibility in poly(butylene terephthalate)/polycarbonate blends: A comparison with poly(ethylene) Tj ETQq1 1 0.784314 rgBT 2821-2832.	/Qverlock	10 Tf 50 58
96	Crystallization of Poly(ethylene terephthalate) in Poly(ethylene terephthalate)/Bisphenol A Polycarbonate Block Copolymers: Influence of Block Length and Role of the Rubbery Amorphous Component. Macromolecular Chemistry and Physics, 2004, 205, 2486-2495.	1.1	7
97	Effects of annealing on crystallinity and phase behaviour of PET/PC block copolymers. European Polymer Journal, 2003, 39, 1081-1089.	2.6	33
98	Fractal analysis of cracks in alumina–zirconia composites. Journal of the European Ceramic Society, 2003, 23, 469-479.	2.8	65
99	Primary Crystal Nucleation and Growth Regime Transition in Isotactic Polypropylene. Journal of Macromolecular Science - Physics, 2003, 42, 387-401.	0.4	7
100	Modification of PET by Reactive Blending with Sulfonated Esters. II. Isothermal Crystallization Kinetics of PET-Ionomers. Journal of Macromolecular Science - Physics, 2003, 42, 989-1005.	0.4	6
101	Influence of the Activity of Transesterification Catalysts on the Phase Behavior of PC-PET Blends. Macromolecular Chemistry and Physics, 2002, 203, 695-704.	1.1	47
102	Sulfur containing polymers European Polymer Journal, 2002, 38, 1281-1288.	2.6	28
103	Modification of PET by reactive blending with sulfonated esters, 1. Synthesis and characterization of PET-ionomers. Macromolecular Symposia, 2001, 176, 211-222.	0.4	10
104	Quantitative Evaluation by Fractal Analysis of Indentation Crack Paths in Si3N4–SiCw Composites. Journal of the European Ceramic Society, 1999, 19, 441-449.	2.8	9
105	Polymer crystallization: Fold surface free energy determination by different thermal analysis techniques. Thermochimica Acta, 1995, 269-270, 191-199.	1.2	18
106	An investigation on the structure and thermal behaviour of syndiotactic poly(propylene). Macromolecular Rapid Communications, 1994, 15, 225-232.	2.0	17
107	Relationship between crystallization regimes and melting phenomena in isotactic polypropylene. European Polymer Journal, 1993, 29, 1037-1040.	2.6	12
108	Thermal properties and physical ageing of poly (l-lactic acid). Polymer, 1992, 33, 2699-2703.	1.8	166