Hao Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5254900/publications.pdf

Version: 2024-02-01

758635 642321 579 23 12 23 citations h-index g-index papers 23 23 23 638 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Cellâ€Inspired Allâ€Aqueous Microfluidics: From Intracellular Liquid–Liquid Phase Separation toward Advanced Biomaterials. Advanced Science, 2020, 7, 1903359.	5.6	111
2	Budding-like division of all-aqueous emulsion droplets modulated by networks of protein nanofibrils. Nature Communications, 2018, 9, 2110.	5.8	82
3	Picoinjection-Enabled Multitarget Loop-Mediated Isothermal Amplification for Detection of Foodborne Pathogens. Analytical Chemistry, 2018, 90, 13173-13177.	3.2	62
4	Droplet and Microchamberâ€Based Digital Loopâ€Mediated Isothermal Amplification (dLAMP). Small, 2020, 16, e1904469.	5.2	53
5	Phaseâ€Separationâ€Induced Formation of Janus Droplets Based on Aqueous Twoâ€Phase Systems. Macromolecular Chemistry and Physics, 2017, 218, 1600422.	1.1	41
6	An electricity- and instrument-free infectious disease sensor based on a 3D origami paper-based analytical device. Lab on A Chip, 2021, 21, 1908-1915.	3.1	28
7	Partitioning-dependent conversion of polyelectrolyte assemblies in an aqueous two-phase system. Soft Matter, 2018, 14, 1552-1558.	1.2	23
8	Controlled Actuation of Liquid Marbles on a Dielectric. ACS Applied Materials & Samp; Interfaces, 2018, 10, 34822-34827.	4.0	23
9	Highly efficient water harvesting of bioinspired spindle-knotted microfibers with continuous hollow channels. Journal of Materials Chemistry A, 2022, 10, 7130-7137.	5.2	23
10	Development of dual-component protein microparticles in all-aqueous systems for biomedical applications. Journal of Materials Chemistry B, 2019, 7, 3059-3065.	2.9	19
11	Hand-Powered Microfluidics for Parallel Droplet Digital Loop-Mediated Isothermal Amplification Assays. ACS Sensors, 2021, 6, 2868-2874.	4.0	17
12	Electricity-free picoinjection assisted droplet microfluidics. Sensors and Actuators B: Chemical, 2019, 298, 126766.	4.0	15
13	A manual and portable centrifuge combined with a paper-based immunoassay for myocardial infarction diagnosis. Chemical Engineering Journal, 2021, 409, 128131.	6.6	11
14	Microfluidic chip for rapid analysis of cerebrospinal fluid infected with Staphylococcus aureus. Analytical Methods, 2014, 6, 2015-2019.	1.3	10
15	A systematic review on advances in diagnostics for herpes simplex keratitis. Survey of Ophthalmology, 2021, 66, 514-530.	1.7	10
16	Rayleigh-Taylor instability of viscous liquid films under a temperature-controlled inclined substrate. Physical Review Fluids, 2021, 6, .	1.0	9
17	Paper-based analytical devices for point-of-care blood tests. Biomicrofluidics, 2021, 15, 041303.	1.2	9
18	Flower-like droplets obtained by self-emulsification of a phase-separating (SEPS) aqueous film. Soft Matter, 2020, 16, 6050-6055.	1.2	7

#	Article	IF	CITATIONS
19	Detection of pathogens using graphene quantum dots and gold nanoclusters on paper-based analytical devices. Sensors and Actuators B: Chemical, 2022, 363, 131824.	4.0	7
20	Current and Future Perspectives on Microfluidic Tear Analytic Devices. ACS Sensors, 2022, 7, 1300-1314.	4.0	7
21	Deepâ€dLAMP: Deep Learningâ€Enabled Polydisperse Emulsionâ€Based Digital Loopâ€Mediated Isothermal Amplification. Advanced Science, 2022, 9, e2105450.	5.6	6
22	Compartmentalized Aqueous-in-Aqueous Droplets for Flow Biocatalysis. ACS Applied Materials & Samp; Interfaces, 2022, 14, 5009-5016.	4.0	5
23	Macromol. Chem. Phys. 2/2017. Macromolecular Chemistry and Physics, 2017, 218, .	1.1	1