
Mingxiang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5254454/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heavy metal distribution in different soil aggregate size classes from restored brackish marsh, oil exploitation zone, and tidal mud flat of the Yellow River Delta. Journal of Soils and Sediments, 2016, 16, 821-830.	3.0	65
2	Interaction Between Plant Roots and Soil Water Flow in Response to Preferential Flow Paths in Northern China. Land Degradation and Development, 2017, 28, 648-663.	3.9	43
3	Effects of temperature, soil moisture, soil type and their interactions on soil carbon mineralization in Zoigê alpine wetland, Qinghai-Tibet Plateau. Chinese Geographical Science, 2011, 21, 27-35.	3.0	40
4	The preferential flow of soil: A widespread phenomenon in pedological perspectives. Eurasian Soil Science, 2016, 49, 661-672.	1.6	37
5	A review of preferential water flow in soil science. Canadian Journal of Soil Science, 2018, 98, 604-618.	1.2	33
6	Distribution and contamination assessment of heavy metals in soils from tidal flat, oil exploitation zone and restored wetland in the Yellow River Estuary. Wetlands, 2016, 36, 153-165.	1.5	31
7	Stronger network connectivity with lower diversity of soil fungal community was presented in coastal marshes after sixteen years of freshwater restoration. Science of the Total Environment, 2020, 744, 140623.	8.0	24
8	Hydrological connectivity: One of the driving factors of plant communities in the Yellow River Delta. Ecological Indicators, 2020, 112, 106150.	6.3	24
9	Wetlands with greater degree of urbanization improve PM2.5 removal efficiency. Chemosphere, 2018, 207, 601-611.	8.2	22
10	Capturing hydrological connectivity structure of wetlands with indices based on graph theory: A case study in Yellow River Delta. Journal of Cleaner Production, 2019, 239, 118059.	9.3	22
11	Runoff Response to Soil Moisture and Micro-topographic Structure on the Plot Scale. Scientific Reports, 2019, 9, 2532.	3.3	22
12	Impacts of forest structure on precipitation interception and runâ€off generation in a semiarid region in northern China. Hydrological Processes, 2018, 32, 2362-2376.	2.6	21
13	The size and distribution of tidal creeks affects salt marsh restoration. Journal of Environmental Management, 2020, 259, 110070.	7.8	21
14	Multi-scale analysis of hydrological connectivity and plant response in the Yellow River Delta. Science of the Total Environment, 2020, 702, 134889.	8.0	21
15	Changes in soil microbial community composition during Phragmites australis straw decomposition in salt marshes with freshwater pumping. Science of the Total Environment, 2021, 762, 143996.	8.0	19
16	Influence of fungi and bag mesh size on litter decomposition and water quality. Environmental Science and Pollution Research, 2019, 26, 18304-18315.	5.3	16
17	Novel indicator for assessing wetland degradation based on the index of hydrological connectivity and its correlation with the root-soil interface. Ecological Indicators, 2021, 133, 108392.	6.3	12
18	Assessing the effects of salinity and inundation on halophytes litter breakdown in Yellow River Delta wetland. Ecological Indicators, 2020, 115, 106405.	6.3	10

MINGXIANG ZHANG

#	Article	IF	CITATIONS
19	Effect of straw decomposition on organic carbon fractions and aggregate stability in salt marshes. Science of the Total Environment, 2021, 777, 145852.	8.0	9
20	Water quantity and quality changes from forested riparian buffer in Beijing. Environmental Science and Pollution Research, 2019, 26, 29041-29051.	5.3	7
21	Simulating Spatial Variation of Soil Carbon Content in the Yellow River Delta: Comparative Analysis of Two Artificial Neural Network Models. Wetlands, 2020, 40, 223-233.	1.5	7
22	Reed decomposition under Bacillus subtilis addition conditions and the influence on water quality. Ecohydrology and Hydrobiology, 2020, 20, 504-512.	2.3	7
23	Integrating habitat suitability modelling and assessment of the conservation gaps of nature reserves for the threatened Reeves's Pheasant. Bird Conservation International, 0, , 1-14.	1.3	6
24	Effects of Imazapyr on Spartina alterniflora and Soil Bacterial Communities in a Mangrove Wetland. Water (Switzerland), 2021, 13, 3277.	2.7	6
25	Tides affect plant connectivity in coastal wetlands on a small-patch scale. Chemosphere, 2021, 262, 127977.	8.2	5
26	Effects of roots systems on hydrological connectivity below the soil surface in the Yellow River Delta wetland. Ecohydrology, 2022, 15, e2393.	2.4	5
27	Response of Reeves's Pheasants Distribution to Human Infrastructure in the Dabie Mountains over the Last 20 Years. Animals, 2021, 11, 2037.	2.3	4
28	Coexistence mechanisms of Tamarix chinensis and Suaeda salsa in the Yellow River Delta, China. Environmental Science and Pollution Research, 2020, 27, 26172-26181.	5.3	2
29	How Waterlogged Conditions Influence the Nitrogen Dynamics in a Soil–Water–Plant System: Implications for Wetland Restoration. Water (Switzerland), 2021, 13, 2957.	2.7	2
30	Sizes of crab burrows regulate water–salt transport of tidal marsh wetlands. Marine Environmental Research, 2022, 179, 105691.	2.5	2
31	Lead isotope trends and sources in the atmosphere at the artificial wetland. PeerJ, 2019, 7, e7851.	2.0	1