
Cai-Zhong Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5254395/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heterologous overexpression of strawberry bZIP11 induces sugar accumulation and inhibits plant growth of tomato. Scientia Horticulturae, 2022, 292, 110634.	3.6	15
2	The HD-Zip transcription factor SIHB15A regulates abscission by modulating jasmonoyl-isoleucine biosynthesis. Plant Physiology, 2022, 189, 2396-2412.	4.8	17
3	Heterologous Expression of Dehydration-Inducible MfbHLH145 of Myrothamnus flabellifoli Enhanced Drought and Salt Tolerance in Arabidopsis. International Journal of Molecular Sciences, 2022, 23, 5546.	4.1	5
4	The chrysanthemum DEAD-box RNA helicase CmRH56 regulates rhizome outgrowth in response to drought stress. Journal of Experimental Botany, 2022, 73, 5671-5681.	4.8	5
5	Heterologous Expression of MfWRKY7 of Resurrection Plant Myrothamnus flabellifolia Enhances Salt and Drought Tolerance in Arabidopsis. International Journal of Molecular Sciences, 2022, 23, 7890.	4.1	5
6	Xylem functionality controlling blossom-end rot incidence in transgenic ALC::NCED tomato plants. South African Journal of Botany, 2022, 150, 120-128.	2.5	1
7	R2R3 MYBâ€dependent auxin signalling regulates trichome formation, and increased trichome density confers spider mite tolerance on tomato. Plant Biotechnology Journal, 2021, 19, 138-152.	8.3	39
8	A novel aspartic protease inhibitor inhibits the enzymatic browning of potatoes. Postharvest Biology and Technology, 2021, 172, 111353.	6.0	19
9	SIERF52 regulates <i>SITIP1;1</i> expression to accelerate tomato pedicel abscission. Plant Physiology, 2021, 185, 1829-1846.	4.8	18
10	Dehydration-Induced WRKY Transcriptional Factor MfWRKY70 of Myrothamnus flabellifolia Enhanced Drought and Salinity Tolerance in Arabidopsis. Biomolecules, 2021, 11, 327.	4.0	24
11	Ethylene-regulated asymmetric growth of the petal base promotes flower opening in rose (<i>Rosa) Tj ETQq1 1 C</i>).784314 r 6.6	gBT /Overloc
12	AUXIN RESPONSE FACTOR 18–HISTONE DEACETYLASE 6 module regulates floral organ identity in rose (<i>Rosa hybrida</i>). Plant Physiology, 2021, 186, 1074-1087.	4.8	22
13	Inflorescence abscission protein SIIDL6 promotes low light intensity-induced tomato flower abscission. Plant Physiology, 2021, 186, 1288-1301.	4.8	22
14	The circadian-controlled PIF8–BBX28 module regulates petal senescence in rose flowers by governing mitochondrial ROS homeostasis at night. Plant Cell, 2021, 33, 2716-2735.	6.6	48
15	A Cytokinin Analog Thidiazuron Suppresses Shoot Growth in Potted Rose Plants via the Gibberellic Acid Pathway. Frontiers in Plant Science, 2021, 12, 639717.	3.6	11
16	Editorial: Regulation of Fruit Ripening and Senescence. Frontiers in Plant Science, 2021, 12, 711458.	3.6	4
17	Auxin response and transport during induction of pedicel abscission in tomato. Horticulture Research, 2021, 8, 192.	6.3	16
18	Role of the <scp>KNOTTED1â€LIKE HOMEOBOX</scp> protein (<scp>KD1</scp>) in regulating abscission of tomato flower pedicels at early and late stages of the process. Physiologia Plantarum, 2021, 173, 2103-2118.	5.2	4

#	Article	IF	CITATIONS
19	Improvement of drought resistance through manipulation of the gibberellic acid pathway. Ornamental Plant Research, 2021, 1, 1-7.	0.9	2
20	S1-bZIP Transcription Factors Play Important Roles in the Regulation of Fruit Quality and Stress Response. Frontiers in Plant Science, 2021, 12, 802802.	3.6	10
21	Postharvest physiology of cut Gardenia jasminoides flowers. Scientia Horticulturae, 2020, 261, 108983.	3.6	7
22	MfbHLH38, a Myrothamnus flabellifolia bHLH transcription factor, confers tolerance to drought and salinity stresses in Arabidopsis. BMC Plant Biology, 2020, 20, 542.	3.6	47
23	Auxin Regulates Sucrose Transport to Repress Petal Abscission in Rose (<i>Rosa hybrida</i>). Plant Cell, 2020, 32, 3485-3499.	6.6	43
24	Heterologous Expression of Dehydration-Inducible MfWRKY17 of Myrothamnus Flabellifolia Confers Drought and Salt Tolerance in Arabidopsis. International Journal of Molecular Sciences, 2020, 21, 4603.	4.1	7
25	Cysteine Protease Inhibitors Reduce Enzymatic Browning of Potato by Lowering the Accumulation of Free Amino Acids. Journal of Agricultural and Food Chemistry, 2020, 68, 2467-2476.	5.2	32
26	MfPIF1 of Resurrection Plant Myrothamnus flabellifolia Plays a Positive Regulatory Role in Responding to Drought and Salinity Stresses in Arabidopsis. International Journal of Molecular Sciences, 2020, 21, 3011.	4.1	19
27	Re-evaluation of the nor mutation and the role of the NAC-NOR transcription factor in tomato fruit ripening. Journal of Experimental Botany, 2020, 71, 3560-3574.	4.8	120
28	Antisense RNA Inhibition of Photosynthetic Gene Expression. , 2020, , 147-158.		0
29	Auxin response factor 6A regulates photosynthesis, sugar accumulation, and fruit development in tomato. Horticulture Research, 2019, 6, 85.	6.3	82
30	PhERF2, an ethylene-responsive element binding factor, plays an essential role in waterlogging tolerance of petunia. Horticulture Research, 2019, 6, 83.	6.3	41
31	Metabolomic and Transcriptomic Analyses Reveal That a MADS-Box Transcription Factor TDR4 Regulates Tomato Fruit Quality. Frontiers in Plant Science, 2019, 10, 792.	3.6	17
32	<i>Rosa hybrida</i> Rh <scp>ERF</scp> 1 and Rh <scp>ERF</scp> 4 mediate ethylene―and auxinâ€regulated petal abscission by influencing pectin degradation. Plant Journal, 2019, 99, 1159-1171.	5.7	56
33	In rose, transcription factor PTM balances growth and drought survival via PIP2;1 aquaporin. Nature Plants, 2019, 5, 290-299.	9.3	112
34	Sequencing a Juglans regia × J. microcarpa hybrid yields high-quality genome assemblies of parental species. Horticulture Research, 2019, 6, 55.	6.3	67
35	Diversity and redundancy of the ripening regulatory networks revealed by the fruitENCODE and the new CRISPR/Cas9 CNR and NOR mutants. Horticulture Research, 2019, 6, 39.	6.3	112
36	1-Methylcyclopropene (1-MCP), storage time, and shelf life and temperature affect phenolic compounds and antioxidant activity of â€Jonagold' apple. Postharvest Biology and Technology, 2019, 150, 71-79.	6.0	39

#	Article	IF	CITATIONS
37	<i><scp>BEL</scp>1â€<scp>LIKE HOMEODOMAIN</scp> 11</i> regulates chloroplast development and chlorophyll synthesis in tomato fruit. Plant Journal, 2018, 94, 1126-1140.	5.7	76
38	Transcriptome profiling reveals regulatory mechanisms underlying corolla senescence in petunia. Horticulture Research, 2018, 5, 16.	6.3	28
39	A NAC transcription factor, NOR-like1, is a new positive regulator of tomato fruit ripening. Horticulture Research, 2018, 5, 75.	6.3	152
40	The Tomato Hybrid Proline-rich Protein regulates the abscission zone competence to respond to ethylene signals. Horticulture Research, 2018, 5, 28.	6.3	18
41	PhOBF1, a petunia ocs element binding factor, plays an important role in antiviral RNA silencing. Journal of Experimental Botany, 2017, 68, erw490.	4.8	17
42	Control of chrysanthemum flowering through integration with an aging pathway. Nature Communications, 2017, 8, 829.	12.8	114
43	Ethanol fumigation combined with and without nitrogen gas delays potato greening and inhibits glycoalkaloids generation under light. Postharvest Biology and Technology, 2017, 134, 31-37.	6.0	5
44	An Ethylene-Induced Regulatory Module Delays Flower Senescence by Regulating Cytokinin Content. Plant Physiology, 2017, 173, 853-862.	4.8	90
45	Application of Exogenous Ethylene Inhibits Postharvest Peel Browning of â€ ⁻ Huangguan' Pear. Frontiers in Plant Science, 2017, 7, 2029.	3.6	36
46	Comparative Transcriptomic Analysis Reveals That Ethylene/H2O2-Mediated Hypersensitive Response and Programmed Cell Death Determine the Compatible Interaction of Sand Pear and Alternaria alternata. Frontiers in Plant Science, 2017, 8, 195.	3.6	31
47	Transcriptome Profiling of Petal Abscission Zone and Functional Analysis of an Aux/IAA Family Gene RhIAA16 Involved in Petal Shedding in Rose. Frontiers in Plant Science, 2016, 7, 1375.	3.6	43
48	A petunia ethylene-responsive element binding factor, <i>PhERF2</i> , plays an important role in antiviral RNA silencing. Journal of Experimental Botany, 2016, 67, 3353-3365.	4.8	36
49	LrABCF1, a GCN-type ATP-binding cassette transporter from Lilium regale, is involved in defense responses against viral and fungal pathogens. Planta, 2016, 244, 1185-1199.	3.2	15
50	A basic helix-loop-helix transcription factor, PhFBH4, regulates flower senescence by modulating ethylene biosynthesis pathway in petunia. Horticulture Research, 2015, 2, 15059.	6.3	59
51	A transcriptome approach towards understanding the development of ripening capacity in â€~Bartlett' pears (Pyrus communis L.). BMC Genomics, 2015, 16, 762.	2.8	25
52	Transcriptomic analysis reveals numerous diverse protein kinases and transcription factors involved in desiccation tolerance in the resurrection plant Myrothamnus flabellifolia. Horticulture Research, 2015, 2, 15034.	6.3	52
53	Effects of postharvest curing treatment on flesh colour and phenolic metabolism in fresh-cut potato products. Food Chemistry, 2015, 169, 246-254.	8.2	88
54	A KNOTTED1-LIKE HOMEOBOX Protein Regulates Abscission in Tomato by Modulating the Auxin Pathway Â. Plant Physiology, 2015, 167, 844-853.	4.8	66

#	Article	IF	CITATIONS
55	Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in petunia. Horticulture Research, 2015, 2, 15013.	6.3	92
56	A short-term carbon dioxide treatment inhibits the browning of fresh-cut burdock. Postharvest Biology and Technology, 2015, 110, 96-102.	6.0	36
57	Influence of 1-MCP treatments on eating quality and consumer preferences of â€~Qinmei' kiwifruit during shelf life. Journal of Food Science and Technology, 2015, 52, 335-342.	2.8	16
58	Controlling plant architecture by manipulation of gibberellic acid signalling in petunia. Horticulture Research, 2014, 1, 14061.	6.3	22
59	A Petunia Homeodomain-Leucine Zipper Protein, PhHD-Zip, Plays an Important Role in Flower Senescence. PLoS ONE, 2014, 9, e88320.	2.5	46
60	Defence responses regulated by jasmonate and delayed senescence caused by ethylene receptor mutation contribute to the tolerance of petunia to <i><scp>B</scp>otrytis cinerea</i> . Molecular Plant Pathology, 2013, 14, 453-469.	4.2	25
61	Transcriptome Changes Associated with Delayed Flower Senescence on Transgenic Petunia by Inducing Expression of etr1-1, a Mutant Ethylene Receptor. PLoS ONE, 2013, 8, e65800.	2.5	37
62	TRV Based Virus Induced Gene Silencing in Gladiolus (Gladiolus grandiflorusL.), A Monocotyledonous Ornamental Plant. Vegetos, 2013, 26, 170.	1.5	2
63	Co-silencing of the <i>Mirabilis</i> antiviral protein (MAP) permits virus-induced gene silencing (VIGS) of other genes in Four O'Clock plants (<i>Mirabilis jalapa</i>). Journal of Horticultural Science and Biotechnology, 2012, 87, 334-340.	1.9	12
64	Mechanisms Involved in Calcium Deficiency Development in Tomato Fruit in Response to Gibberellins. Journal of Plant Growth Regulation, 2012, 31, 221-234.	5.1	41
65	Virus-Induced Gene Silencing in Ornamental Plants. Methods in Molecular Biology, 2011, 744, 81-96.	0.9	23
66	Effect of maturity and cold storage on ethylene biosynthesis and ripening in â€~Bartlett' pears treated after harvest with 1-MCP. Postharvest Biology and Technology, 2011, 59, 1-9.	6.0	84
67	Identification of defense-related genes newly-associated with tomato flower abscission. Plant Signaling and Behavior, 2011, 6, 590-593.	2.4	20
68	Treatment with thidiazuron improves opening and vase life of iris flowers. Postharvest Biology and Technology, 2010, 56, 77-84.	6.0	36
69	Sodium hypochlorite: A promising agent for reducing Botrytis cinerea infection on rose flowers. Postharvest Biology and Technology, 2010, 58, 262-267.	6.0	23
70	Microarray Analysis of the Abscission-Related Transcriptome in the Tomato Flower Abscission Zone in Response to Auxin Depletion. Plant Physiology, 2010, 154, 1929-1956.	4.8	202
71	Physiological and molecular changes during opening and senescence of Nicotiana mutabilis flowers. Plant Science, 2010, 179, 267-272.	3.6	23
72	Virus-Induced Gene Silencing for Functional Characterization of Genes in Petunia. , 2009, , 381-394.		10

#	Article	IF	CITATIONS
73	Silencing polygalacturonase expression inhibits tomato petiole abscission. Journal of Experimental Botany, 2008, 59, 973-979.	4.8	88
74	Functional analysis of a RING domain ankyrin repeat protein that is highly expressed during flower senescence. Journal of Experimental Botany, 2007, 58, 3623-3630.	4.8	34
75	Genes associated with opening and senescence of Mirabilis jalapa flowers. Journal of Experimental Botany, 2007, 58, 2193-2201.	4.8	44
76	Silencing a prohibitin alters plant development and senescence. Plant Journal, 2005, 44, 16-24.	5.7	84
77	Recruitment of CRABS CLAW to promote nectary development within the eudicot clade. Development (Cambridge), 2005, 132, 5021-5032.	2.5	169
78	WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4706-4711.	7.1	389
79	Chalcone synthase as a reporter in virus-induced gene silencing studies of flower senescence. Plant Molecular Biology, 2004, 55, 521-530.	3.9	176
80	Arabidopsis Transcription Factors: Genome-Wide Comparative Analysis Among Eukaryotes. Science, 2000, 290, 2105-2110.	12.6	2,455
81	Generation, Identification, and Characterization of Repair-Defective Mutants of Arabidopsis. , 1999, 113, 31-40.		3
82	Radiation-sensitive Arabidopsis mutants are proficient for T-DNA transformation. Molecular Genetics and Genomics, 1999, 261, 623-626.	2.4	11
83	Loss of the Photosynthetic Capacity and Proteins in Senescing Leaves at Top Positions of Two Cultivars of Rice in Relation to the Source Capacities of the Leaves for Carbon and Nitrogen. Plant and Cell Physiology, 1999, 40, 496-503.	3.1	24
84	Generation, Identification, and Characterization of Repair-Defective Mutants of Arabidopsis. , 1999, , 31-40.		0
85	Cloning and characterization of a gene (UVR3) required for photorepair of 6-4 photoproducts in Arabidopsis thaliana. Nucleic Acids Research, 1998, 26, 638-644.	14.5	139
86	Photorepair mutants of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 7441-7445.	7.1	112
87	Regulation of photosynthesis in developing leaves of soybean chlorophyll-deficient mutants. Photosynthesis Research, 1997, 51, 185-192.	2.9	8
88	UV- and Gamma-Radiation Sensitive Mutants of <i>Arabidopsis thaliana</i> . Genetics, 1997, 147, 1401-1409.	2.9	53
89	Little or No Repair of Cyclobutyl Pyrimidine Dimers Is Observed in the Organellar Genomes of the Young Arabidopsis Seedling. Plant Physiology, 1996, 111, 19-25.	4.8	39
90	A mechanism for intergenomic integration: abundance of ribulose bisphosphate carboxylase small-subunit protein influences the translation of the large-subunit mRNA Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 3881-3885.	7.1	119

#	Article	IF	CITATIONS
91	Regulation of Photosynthesis during Leaf Development in RbcS Antisense DNA Mutants of Tobacco. Plant Physiology, 1995, 107, 215-224.	4.8	70
92	Destabilization ofrbcS sense transcripts by antisense RNA. Plant Molecular Biology, 1994, 25, 569-576.	3.9	16
93	Antisense RNA inhibition of Rubisco activase expression. Plant Journal, 1994, 5, 787-798.	5.7	53
94	Photosynthesis, Rubisco Activity and Amount, and Their Regulation by Transcription in Senescing Soybean Leaves. Plant Physiology, 1993, 101, 105-112.	4.8	133
95	Determination of IAA and ABA in the same plant sample by a widely applicable method using GC-MS with selected ion monitoring. Journal of Plant Growth Regulation, 1992, 11, 55-65.	5.1	30
96	Physiological and ecological characteristics of high yielding varieties in rice plants. I. Yield and dry matter production Japanese Journal of Crop Science, 1988, 57, 132-138.	0.2	48
97	A rapid in vitro phenotypic assay of walnut shoots for pre-screening resistance to Phytophthora pini. Plant Health Progress, 0, , .	1.4	2