Peng-Fei Duan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5253914/peng-fei-duan-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

111
papers5,063
citations39
h-index69
g-index119
ext. papers6,501
ext. citations8.7
avg, IF6.45
L-index

#	Paper	IF	Citations
111	Circularly polarized luminescent porous crystalline nanomaterials Nanoscale, 2022,	7.7	4
110	Numerical Study on the Influence of Distributing Chamber Volume on Metallurgical Effects in Two-Strand Induction Heating Tundish. <i>Metals</i> , 2022 , 12, 509	2.3	0
109	Endowing inorganic nanomaterials with circularly polarized luminescence. <i>Aggregate</i> , 2022 , 3,	22.9	3
108	Tunable Anti-Stokes-Shift Behaviors Based on Intramolecular Charge Transfer Characteristics of Diarylethene Derivatives. <i>Advanced Optical Materials</i> , 2022 , 10, 2102180	8.1	0
107	Tunable Circularly Polarized Luminescence of Excited-State-Proton-Transfer-Based Chiral Guanidine. <i>Advanced Photonics Research</i> , 2022 , 3, 2100287	1.9	
106	Chiral Luminescent Liquid Crystal with Multi-State-Reversibility: Breakthrough in Advanced Anti-Counterfeiting Materials <i>Advanced Science</i> , 2022 , e2201565	13.6	12
105	Frontiers in circularly polarized luminescence: molecular design, self-assembly, nanomaterials, and applications. <i>Science China Chemistry</i> , 2021 , 64, 2060	7.9	46
104	Switching Photon Upconversion by Using Photofluorochromic Annihilator with Low-Lying Triplet. Journal of Physical Chemistry Letters, 2021 , 12, 3135-3141	6.4	2
103	Recent Advances of Circularly Polarized Luminescence in Photon Upconversion Systems. <i>Chemistry Letters</i> , 2021 , 50, 546-552	1.7	2
102	Multi-Light-Responsive Upconversion-and-Downshifting-Based Circularly Polarized Luminescent Switches in Chiral Metal-Organic Frameworks. <i>Advanced Materials</i> , 2021 , 33, e2101797	24	13
101	Luminescent Supramolecular Gels 2021 , 215-256		
100	Improving the Overall Properties of Circularly Polarized Luminescent Materials Through Arene-Perfluoroarene Interactions. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 4575-4580	16.4	14
99	Improving the Overall Properties of Circularly Polarized Luminescent Materials Through Arene P erfluoroarene Interactions. <i>Angewandte Chemie</i> , 2021 , 133, 4625-4630	3.6	3
98	Photoswitchable Photon Upconversion from Turn-on Mode Fluorescent Diarylethenes. <i>CCS Chemistry</i> , 2021 , 3, 665-674	7.2	10
97	Signal transmission encryption based on dye-doped chiral liquid crystals via tunable and efficient circularly polarized luminescence. <i>Materials Advances</i> , 2021 , 2, 3851-3855	3.3	4
96	Steering Nanohelix and Upconverted Circularly Polarized Luminescence by Using Completely Achiral Components. <i>ACS Nano</i> , 2021 , 15, 2753-2761	16.7	18
95	Regulating Circularly Polarized Luminescence of Axially Chiral Anthracene Derivatives through Solvatochromism and Supramolecular Self-assembly. <i>ChemNanoMat</i> , 2021 , 7, 429-433	3.5	2

(2019-2021)

94	Steering Triplet-Triplet Annihilation Upconversion through Enantioselective Self-Assembly in a Supramolecular Gel. <i>Journal of the American Chemical Society</i> , 2021 , 143, 13259-13265	16.4	5
93	Halogen Bonded Chiral Emitters: Generation of Chiral Fractal Architecture with Amplified Circularly Polarized Luminescence. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 22711-22716	16.4	5
92	Halogen Bonded Chiral Emitters: Generation of Chiral Fractal Architecture with Amplified Circularly Polarized Luminescence. <i>Angewandte Chemie</i> , 2021 , 133, 22893	3.6	2
91	Toward Large Dissymmetry Factor of Circularly Polarized Luminescence in Donor-Acceptor Hybrid Systems. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 8566-8574	6.4	3
90	Sequentially amplified circularly polarized ultraviolet luminescence for enantioselective photopolymerization. <i>Nature Communications</i> , 2020 , 11, 5659	17.4	35
89	Electric-Field-Regulated Energy Transfer in Chiral Liquid Crystals for Enhancing Upconverted Circularly Polarized Luminescence through Steering the Photonic Bandgap. <i>Advanced Materials</i> , 2020 , 32, e2000820	24	60
88	Hierarchically Chiral Lattice Self-Assembly Induced Circularly Polarized Luminescence. <i>ACS Nano</i> , 2020 , 14, 3190-3198	16.7	31
87	New Perspectives to Trigger and Modulate Circularly Polarized Luminescence of Complex and Aggregated Systems: Energy Transfer, Photon Upconversion, Charge Transfer, and Organic Radical. <i>Accounts of Chemical Research</i> , 2020 , 53, 1279-1292	24.3	100
86	Dual-Mode Induction of Tunable Circularly Polarized Luminescence from Chiral Metal-Organic Frameworks. <i>Research</i> , 2020 , 2020, 6452123	7.8	20
85	Circularly Polarized Luminescence from Gelator Molecules: From Isolated Molecules to Assemblies 2020 , 249-272		1
84	Amplifying Dissymmetry Factor of Upconverted Circularly Polarized Luminescence through Chirality-Induced Spin Polarization in the Photon Upconversion Process. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 311-317	6.4	21
83	Interfacial assembled Langmuir films of isomeric lipid derivative: Effect of hydrogen bond and chirality transfer. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2020 , 586, 124280	5.1	
82	Mechanically Controlled and Consecutively Boosted Circularly Polarized Luminescence of Nanoassemblies from Achiral Molecules. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 17274-17281	3.8	11
81	Chiral Platinum-Based Metallomesogens with Highly Efficient Circularly Polarized Electroluminescence in Solution-Processed Organic Light-Emitting Diodes. <i>Advanced Optical Materials</i> , 2020 , 8, 2000775	8.1	29
80	Circularly polarized luminescence of nanoassemblies via multi-dimensional chiral architecture control. <i>Nanoscale</i> , 2020 , 12, 19497-19515	7.7	25
79	Amplifying the excited state chirality through self-assembly and subsequent enhancement via plasmonic silver nanowires. <i>Nanoscale</i> , 2020 , 12, 19760-19767	7.7	3
78	Circularly Polarized Luminescence in Nanoassemblies: Generation, Amplification, and Application. <i>Advanced Materials</i> , 2020 , 32, e1900110	24	283
77	Optically active quantum dots with induced circularly polarized luminescence in amphiphilic peptide dendron hydrogel. <i>Nanoscale Advances</i> , 2019 , 1, 508-512	5.1	12

76	Towards homochiral supramolecular entities from achiral molecules by vortex mixing-accompanied self-assembly. <i>Chemical Science</i> , 2019 , 10, 2718-2724	9.4	37
75	Optically Active Upconverting Nanoparticles with Induced Circularly Polarized Luminescence and Enantioselectively Triggered Photopolymerization. <i>ACS Nano</i> , 2019 , 13, 2804-2811	16.7	74
74	Stoichiometry-controlled inversion of circularly polarized luminescence in co-assembly of chiral gelators with an achiral tetraphenylethylene derivative. <i>Chemical Communications</i> , 2019 , 55, 2194-2197	5.8	35
73	Circularly Polarized Luminescence of Achiral Cyanine Molecules Assembled on DNA Templates. Journal of the American Chemical Society, 2019 , 141, 9490-9494	16.4	58
72	Two-Photon Absorption-Based Upconverted Circularly Polarized Luminescence Generated in Chiral Perovskite Nanocrystals. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 3290-3295	6.4	70
71	Boosting the circularly polarized luminescence of small organic molecules multi-dimensional morphology control. <i>Chemical Science</i> , 2019 , 10, 6821-6827	9.4	97
70	Circularly polarized luminescence of achiral open-shell Fradicals. <i>Chemical Communications</i> , 2019 , 55, 6583-6586	5.8	28
69	(R)-Binaphthyl derivatives as chiral dopants: substituent position controlled circularly polarized luminescence in liquid crystals. <i>Chemical Communications</i> , 2019 , 55, 5914-5917	5.8	45
68	Chiral self-assembly regulated photon upconversion based on triplet-triplet annihilation. <i>Chinese Chemical Letters</i> , 2019 , 30, 1923-1926	8.1	4
67	Organic Liquids in Energy Systems 2019 , 101-126		
66	Enhanced Circularly Polarized Luminescence in Emissive Charge-Transfer Complexes. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 7013-7019	16.4	97
65	Dependence of the photo-response behavior of self-assembled 2D Azo-derivatives on the functional groups on a solid surface. <i>New Journal of Chemistry</i> , 2019 , 43, 6262-6266	3.6	1
64	Enhanced Circularly Polarized Luminescence in Emissive Charge-Transfer Complexes. <i>Angewandte Chemie</i> , 2019 , 131, 7087-7093	3.6	26
63	Enhanced Circularly Polarized Luminescence from Reorganized Chiral Emitters on the Skeleton of a Zeolitic Imidazolate Framework. <i>Angewandte Chemie</i> , 2019 , 131, 5032-5036	3.6	22
62	Enhanced Circularly Polarized Luminescence from Reorganized Chiral Emitters on the Skeleton of a Zeolitic Imidazolate Framework. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 4978-4982	16.4	70
61	The chiral amine triggered self-assembly of achiral emissive molecules into circularly polarized luminescent supramolecular assemblies. <i>Chemical Communications</i> , 2019 , 55, 11135-11138	5.8	10
60	Photon-upconverting chiral liquid crystal: significantly amplified upconverted circularly polarized luminescence. <i>Chemical Science</i> , 2019 , 10, 172-178	9.4	86
59	Aqueous Photon Upconversion by Anionic Acceptors Self-Assembled on Cationic Bilayer Membranes with a Long Triplet Lifetime. <i>Organic Materials</i> , 2019 , 01, 043-049	1.9	1

(2017-2019)

58	Photon Upconverted Circularly Polarized Luminescence via Triplet-Triplet Annihilation. <i>Advanced Materials</i> , 2019 , 31, e1805683	24	31
57	Cooperative Chirality and Sequential Energy Transfer in a Supramolecular Light-Harvesting Nanotube. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 844-848	16.4	124
56	Cooperative Chirality and Sequential Energy Transfer in a Supramolecular Light-Harvesting Nanotube. <i>Angewandte Chemie</i> , 2019 , 131, 854-858	3.6	27
55	Light-triggered self-assembly of a cyanostilbene-conjugated glutamide from nanobelts to nanotoroids and inversion of circularly polarized luminescence. <i>Chemical Communications</i> , 2018 , 54, 45	1∄- ⁸ 51	6 ³⁷
54	Circularly Polarized Luminescence from a Pyrene-Cyclodextrin Supra-Dendron. <i>Langmuir</i> , 2018 , 34, 582	1 <u>-</u> 5830	30
53	Chiral Perovskite Nanocrystals: Endowing Perovskite Nanocrystals with Circularly Polarized Luminescence (Adv. Mater. 12/2018). <i>Advanced Materials</i> , 2018 , 30, 1870081	24	4
52	Endowing Perovskite Nanocrystals with Circularly Polarized Luminescence. <i>Advanced Materials</i> , 2018 , 30, e1705011	24	139
51	Nanotrumpets and circularly polarized luminescent nanotwists hierarchically self-assembled from an achiral C-symmetric ester. <i>Chemical Communications</i> , 2018 , 54, 4025-4028	5.8	27
50	Proton triggered circularly polarized luminescence in orthogonal- and co-assemblies of chiral gelators with achiral perylene bisimide. <i>Chemical Communications</i> , 2018 , 54, 5630-5633	5.8	34
49	Dual Upconverted and Downconverted Circularly Polarized Luminescence in Donor-Acceptor Assemblies. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 9357-9361	16.4	44
48	Hierarchical Self-Assembly and Chiroptical Studies of Luminescent 4d-4f Cages. <i>Inorganic Chemistry</i> , 2018 , 57, 7982-7992	5.1	28
47	Dual Upconverted and Downconverted Circularly Polarized Luminescence in Donor A cceptor Assemblies. <i>Angewandte Chemie</i> , 2018 , 130, 9501-9505	3.6	20
46	Photon upconversion in organic nanoparticles and subsequent amplification by plasmonic silver nanowires. <i>Nanoscale</i> , 2018 , 10, 985-991	7.7	10
45	Long-Persistent Circularly Polarized Phosphorescence from Chiral Organic Ionic Crystals. <i>Chemistry - A European Journal</i> , 2018 , 24, 17444-17448	4.8	33
44	Control over the emerging chirality in supramolecular gels and solutions by chiral microvortices in milliseconds. <i>Nature Communications</i> , 2018 , 9, 2599	17.4	53
43	Full-Color Tunable Circularly Polarized Luminescent Nanoassemblies of Achiral AIEgens in Confined Chiral Nanotubes. <i>Advanced Materials</i> , 2017 , 29, 1606503	24	181
42	Structural Insights Into 9-Styrylanthracene-Based Luminophores: Geometry Control Versus Mechanofluorochromism and Sensing Properties. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 830-834	4.5	15
41	Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix. Nature Communications, 2017, 8, 15727	17.4	261

40	Solvent-Regulated Self-Assembly of an Achiral Donor-Acceptor Complex in Confined Chiral Nanotubes: Chirality Transfer, Inversion and Amplification. <i>Chemistry - A European Journal</i> , 2017 , 23, 8225-8231	4.8	26
39	Self-Assembled Luminescent Quantum Dots To Generate Full-Color and White Circularly Polarized Light. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 12174-12178	16.4	222
38	Self-Assembled Luminescent Quantum Dots To Generate Full-Color and White Circularly Polarized Light. <i>Angewandte Chemie</i> , 2017 , 129, 12342-12346	3.6	44
37	Doublet-Triplet Energy Transfer-Dominated Photon Upconversion. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 5865-5870	6.4	17
36	Amplification of Circularly Polarized Luminescence through Triplet-Triplet Annihilation-Based Photon Upconversion. <i>Journal of the American Chemical Society</i> , 2017 , 139, 9783-9786	16.4	143
35	All-or-none switching of photon upconversion in self-assembled organogel systems. <i>Faraday Discussions</i> , 2017 , 196, 305-316	3.6	25
34	Dynamic Evolution of Coaxial Nanotoruloid in the Self-Assembled Naphthyl-Containing l-Glutamide. <i>Langmuir</i> , 2016 , 32, 12534-12541	4	16
33	Photon upconversion in supramolecular gel matrixes: spontaneous accumulation of light-harvesting donor-acceptor arrays in nanofibers and acquired air stability. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1887-94	16.4	229
32	Aggregation-Induced Photon Upconversion through Control of the Triplet Energy Landscapes of the Solution and Solid States. <i>Angewandte Chemie</i> , 2015 , 127, 7654-7659	3.6	19
31	Aggregation-induced photon upconversion through control of the triplet energy landscapes of the solution and solid states. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 7544-9	16.4	62
30	Self-assembly of Etonjugated gelators into emissive chiral nanotubes: emission enhancement and chiral detection. <i>Chemistry - an Asian Journal</i> , 2014 , 9, 770-8	4.5	48
29	A bis-cyclometalated iridium complex as a benchmark sensitizer for efficient visible-to-UV photon upconversion. <i>Chemical Communications</i> , 2014 , 50, 13111-3	5.8	65
28	A peptide dendron-based shrinkable metallo-hydrogel for charged species separation and stepwise release of drugs. <i>Chemistry - A European Journal</i> , 2014 , 20, 15419-25	4.8	31
27	Gelation induced supramolecular chirality: chirality transfer, amplification and application. <i>Soft Matter</i> , 2014 , 10, 5428-48	3.6	188
26	Interfacial assembly and hostguest interaction of anthracene-conjugated l-glutamate dendron with cyclodextrin at the air/water interface. <i>Chinese Chemical Letters</i> , 2014 , 25, 487-490	8.1	7
25	A metal ion triggered shrinkable supramolecular hydrogel and controlled release by an amphiphilic peptide dendron. <i>Chemical Communications</i> , 2013 , 49, 10823-5	5.8	54
24	Photon upconverting liquids: matrix-free molecular upconversion systems functioning in air. <i>Journal of the American Chemical Society</i> , 2013 , 135, 19056-9	16.4	185
23	Organogelation-controlled topochemical [2+2] cycloaddition and morphological changes: from nanofiber to peculiar coaxial hollow toruloid-like nanostructures. <i>Chemistry - A European Journal</i> , 2013 , 19, 16072-9	4.8	36

(2009-2012)

22	Universal chiral twist via metal ion induction in the organogel of terephthalic acid substituted amphiphilic L-glutamide. <i>Chemical Communications</i> , 2012 , 48, 7501-3	5.8	75
21	Interfacial assembly of a series of trigonal Schiff base amphiphiles in organized molecular films. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2012 , 407, 108-115	5.1	10
20	Self-Assembling Nanotubes Consisting of Rigid Cyclic Peptides. <i>Advanced Functional Materials</i> , 2012 , 22, 3051-3056	15.6	29
19	Amphiphilic Schiff base organogels: metal-ion-mediated chiral twists and chiral recognition. <i>Chemistry - A European Journal</i> , 2012 , 18, 4916-22	4.8	88
18	Self-assembled organic nanotubes through instant gelation and universal capacity for guest molecule encapsulation. <i>Chemistry - A European Journal</i> , 2012 , 18, 5546-50	4.8	47
17	Langmuir-Blodgett films and chiroptical switch of an azobenzene-containing dendron regulated by the in situ host-guest reaction at the air/water interface. <i>Langmuir</i> , 2011 , 27, 1326-31	4	31
16	Towards a universal organogelator: A general mixing approach to fabricate various organic compounds into organogels. <i>Science China Chemistry</i> , 2011 , 54, 1051-1063	7.9	24
15	Regulation of the chiral twist and supramolecular chirality in co-assemblies of amphiphilic L-glutamic acid with bipyridines. <i>Chemistry - A European Journal</i> , 2011 , 17, 3429-37	4.8	77
14	Hierarchical self-assembly of amphiphilic peptide dendrons: evolution of diverse chiral nanostructures through hydrogel formation over a wide pH range. <i>Chemistry - A European Journal</i> , 2011 , 17, 6389-95	4.8	96
13	Isomeric effect in the self-assembly of pyridine-containing L-glutamic lipid: substituent position controlled morphology and supramolecular chirality. <i>Chemical Communications</i> , 2011 , 47, 5569-71	5.8	52
12	Hierarchical co-assembly of chiral lipid nanotubes with an azobenzene derivative: optical and chiroptical switching. <i>Soft Matter</i> , 2011 , 7, 4654	3.6	40
11	Multiresponsive chiroptical switch of an azobenzene-containing lipid: solvent, temperature, and photoregulated supramolecular chirality. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 3322-9	3.4	112
10	Self-assembly of L-glutamate based aromatic dendrons through the air/water interface: morphology, photodimerization and supramolecular chirality. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 4383-9	3.6	16
9	Photopolymerization and formation of a stable purple Langmuir-Blodgett film based on the gemini-type amphiphilic diacetylene derivatives. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 8871-8	3.4	22
8	Fabrication of organogels composed from carbon nanotubes through a supramolecular approach. <i>New Journal of Chemistry</i> , 2010 , 34, 2847	3.6	34
7	Preparation of optical active polydiacetylene through gelating and the control of supramolecular chirality. <i>Science China Chemistry</i> , 2010 , 53, 432-437	7.9	13
6	Self-assembled ultralong chiral nanotubes and tuning of their chirality through the mixing of enantiomeric components. <i>Chemistry - A European Journal</i> , 2010 , 16, 8034-40	4.8	95
5	Design and self-assembly of L-glutamate-based aromatic dendrons as ambidextrous gelators of water and organic solvents. <i>Langmuir</i> , 2009 , 25, 8706-13	4	69

4	Chirality amplification of porphyrin assemblies exclusively constructed from achiral porphyrin derivatives. <i>ChemPhysChem</i> , 2006 , 7, 2419-23	3.2	39
3	Circularly polarized luminescence in chiral nematic liquid crystals: generation and amplification. Materials Chemistry Frontiers,	7.8	22
2	A new strategy to achieve enhanced upconverted circularly polarized luminescence in chiral perovskite nanocrystals. <i>Nano Research</i> ,1	10	6
1	Highly efficient photon upconversion based on tripletEriplet annihilation from bichromophoric annihilators. <i>Journal of Materials Chemistry C</i> ,	7.1	7