Peng-Fei Duan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5253914/publications.pdf

Version: 2024-02-01

41344 53230 7,780 114 49 citations h-index papers

g-index 119 119 119 4596 docs citations times ranked citing authors all docs

85

#	Article	IF	CITATIONS
1	Circularly Polarized Luminescence in Nanoassemblies: Generation, Amplification, and Application. Advanced Materials, 2020, 32, e1900110.	21.0	602
2	Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix. Nature Communications, 2017, 8, 15727.	12.8	357
3	Selfâ€Assembled Luminescent Quantum Dots To Generate Fullâ€Color and White Circularly Polarized Light. Angewandte Chemie - International Edition, 2017, 56, 12174-12178.	13.8	295
4	Photon Upconversion in Supramolecular Gel Matrixes: Spontaneous Accumulation of Light-Harvesting Donor–Acceptor Arrays in Nanofibers and Acquired Air Stability. Journal of the American Chemical Society, 2015, 137, 1887-1894.	13.7	268
5	Fullâ€Color Tunable Circularly Polarized Luminescent Nanoassemblies of Achiral AlEgens in Confined Chiral Nanotubes. Advanced Materials, 2017, 29, 1606503.	21.0	252
6	Frontiers in circularly polarized luminescence: molecular design, self-assembly, nanomaterials, and applications. Science China Chemistry, 2021, 64, 2060-2104.	8.2	248
7	Gelation induced supramolecular chirality: chirality transfer, amplification and application. Soft Matter, 2014, 10, 5428.	2.7	216
8	Endowing Perovskite Nanocrystals with Circularly Polarized Luminescence. Advanced Materials, 2018, 30, e1705011.	21.0	213
9	Photon Upconverting Liquids: Matrix-Free Molecular Upconversion Systems Functioning in Air. Journal of the American Chemical Society, 2013, 135, 19056-19059.	13.7	210
10	New Perspectives to Trigger and Modulate Circularly Polarized Luminescence of Complex and Aggregated Systems: Energy Transfer, Photon Upconversion, Charge Transfer, and Organic Radical. Accounts of Chemical Research, 2020, 53, 1279-1292.	15.6	210
11	Cooperative Chirality and Sequential Energy Transfer in a Supramolecular Lightâ€Harvesting Nanotube. Angewandte Chemie - International Edition, 2019, 58, 844-848.	13.8	199
12	Amplification of Circularly Polarized Luminescence through Triplet–Triplet Annihilation-Based Photon Upconversion. Journal of the American Chemical Society, 2017, 139, 9783-9786.	13.7	189
13	Enhanced Circularly Polarized Luminescence in Emissive Chargeâ€Transfer Complexes. Angewandte Chemie - International Edition, 2019, 58, 7013-7019.	13.8	137
14	Boosting the circularly polarized luminescence of small organic molecules <i>via</i> multi-dimensional morphology control. Chemical Science, 2019, 10, 6821-6827.	7.4	133
15	Multiresponsive Chiroptical Switch of an Azobenzene-Containing Lipid: Solvent, Temperature, and Photoregulated Supramolecular Chirality. Journal of Physical Chemistry B, 2011, 115, 3322-3329.	2.6	129
16	Two-Photon Absorption-Based Upconverted Circularly Polarized Luminescence Generated in Chiral Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 3290-3295.	4.6	122
17	Photon-upconverting chiral liquid crystal: significantly amplified upconverted circularly polarized luminescence. Chemical Science, 2019, 10, 172-178.	7.4	120
18	Electricâ€Fieldâ€Regulated Energy Transfer in Chiral Liquid Crystals for Enhancing Upconverted Circularly Polarized Luminescence through Steering the Photonic Bandgap. Advanced Materials, 2020, 32, e2000820.	21.0	115

#	Article	IF	Citations
19	Optically Active Upconverting Nanoparticles with Induced Circularly Polarized Luminescence and Enantioselectively Triggered Photopolymerization. ACS Nano, 2019, 13, 2804-2811.	14.6	114
20	Hierarchical Selfâ€Assembly of Amphiphilic Peptide Dendrons: Evolution of Diverse Chiral Nanostructures Through Hydrogel Formation Over a Wide pH Range. Chemistry - A European Journal, 2011, 17, 6389-6395.	3.3	106
21	Enhanced Circularly Polarized Luminescence from Reorganized Chiral Emitters on the Skeleton of a Zeolitic Imidazolate Framework. Angewandte Chemie - International Edition, 2019, 58, 4978-4982.	13.8	106
22	Selfâ€Assembled Ultralong Chiral Nanotubes and Tuning of Their Chirality Through the Mixing of Enantiomeric Components. Chemistry - A European Journal, 2010, 16, 8034-8040.	3.3	103
23	Circularly Polarized Luminescence of Achiral Cyanine Molecules Assembled on DNA Templates. Journal of the American Chemical Society, 2019, 141, 9490-9494.	13.7	103
24	Sequentially amplified circularly polarized ultraviolet luminescence for enantioselective photopolymerization. Nature Communications, 2020, 11, 5659.	12.8	103
25	Control over the emerging chirality in supramolecular gels and solutions by chiral microvortices in milliseconds. Nature Communications, 2018, 9, 2599.	12.8	92
26	Amphiphilic Schiff Base Organogels: Metal″onâ€Mediated Chiral Twists and Chiral Recognition. Chemistry - A European Journal, 2012, 18, 4916-4922.	3.3	91
27	Universal chiral twist via metal ion induction in the organogel of terephthalic acid substituted amphiphilic l-glutamide. Chemical Communications, 2012, 48, 7501.	4.1	85
28	Regulation of the Chiral Twist and Supramolecular Chirality in Coâ€Assemblies of Amphiphilic <scp>L</scp> â€Glutamic Acid with Bipyridines. Chemistry - A European Journal, 2011, 17, 3429-3437.	3.3	84
29	A bis-cyclometalated iridium complex as a benchmark sensitizer for efficient visible-to-UV photon upconversion. Chemical Communications, 2014, 50, 13111-13113.	4.1	80
30	Design and Self-Assembly of <scp>I</scp> -Glutamate-Based Aromatic Dendrons as Ambidextrous Gelators of Water and Organic Solvents. Langmuir, 2009, 25, 8706-8713.	3.5	77
31	Circularly polarized luminescence in chiral nematic liquid crystals: generation and amplification. Materials Chemistry Frontiers, 2021, 5, 4821-4832.	5.9	74
32	Dual Upconverted and Downconverted Circularly Polarized Luminescence in Donor–Acceptor Assemblies. Angewandte Chemie - International Edition, 2018, 57, 9357-9361.	13.8	72
33	A metal ion triggered shrinkable supramolecular hydrogel and controlled release by an amphiphilic peptide dendron. Chemical Communications, 2013, 49, 10823.	4.1	67
34	Aggregationâ€Induced Photon Upconversion through Control of the Triplet Energy Landscapes of the Solution and Solid States. Angewandte Chemie - International Edition, 2015, 54, 7544-7549.	13.8	67
35	Selfâ€Assembled Luminescent Quantum Dots To Generate Fullâ€Color and White Circularly Polarized Light. Angewandte Chemie, 2017, 129, 12342-12346.	2.0	65
36	$(\langle i\rangle R\langle i\rangle)$ -Binaphthyl derivatives as chiral dopants: substituent position controlled circularly polarized luminescence in liquid crystals. Chemical Communications, 2019, 55, 5914-5917.	4.1	65

#	Article	IF	CITATIONS
37	Longâ€Persistent Circularly Polarized Phosphorescence from Chiral Organic Ionic Crystals. Chemistry - A European Journal, 2018, 24, 17444-17448.	3.3	64
38	Isomeric effect in the self-assembly of pyridine-containing L-glutamic lipid: substituent position controlled morphology and supramolecular chirality. Chemical Communications, 2011, 47, 5569-5571.	4.1	62
39	Dual Upconverted and Downconverted Circularly Polarized Luminescence in Donor–Acceptor Assemblies. Angewandte Chemie, 2018, 130, 9501-9505.	2.0	60
40	Towards homochiral supramolecular entities from achiral molecules by vortex mixing-accompanied self-assembly. Chemical Science, 2019, 10, 2718-2724.	7.4	60
41	Chiral Platinumâ€Based Metallomesogens with Highly Efficient Circularly Polarized Electroluminescence in Solutionâ€Processed Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2020, 8, 2000775.	7.3	59
42	Multiâ€Lightâ€Responsive Upconversionâ€andâ€Downshiftingâ€Based Circularly Polarized Luminescent Switches in Chiral Metal–Organic Frameworks. Advanced Materials, 2021, 33, e2101797.	21.0	59
43	Circularly Polarized Luminescence from a Pyrene-Cyclodextrin Supra-Dendron. Langmuir, 2018, 34, 5821-5830.	3.5	56
44	Selfâ€Assembly of π onjugated Gelators into Emissive Chiral Nanotubes: Emission Enhancement and Chiral Detection. Chemistry - an Asian Journal, 2014, 9, 770-778.	3.3	55
45	Proton triggered circularly polarized luminescence in orthogonal- and co-assemblies of chiral gelators with achiral perylene bisimide. Chemical Communications, 2018, 54, 5630-5633.	4.1	53
46	Selfâ€Assembled Organic Nanotubes through Instant Gelation and Universal Capacity for Guest Molecule Encapsulation. Chemistry - A European Journal, 2012, 18, 5546-5550.	3.3	52
47	Hierarchically Chiral Lattice Self-Assembly Induced Circularly Polarized Luminescence. ACS Nano, 2020, 14, 3190-3198.	14.6	52
48	Chiral Luminescent Liquid Crystal with Multiâ€Stateâ€Reversibility: Breakthrough in Advanced Antiâ€Counterfeiting Materials. Advanced Science, 2022, 9, e2201565.	11.2	51
49	Stoichiometry-controlled inversion of circularly polarized luminescence in co-assembly of chiral gelators with an achiral tetraphenylethylene derivative. Chemical Communications, 2019, 55, 2194-2197.	4.1	50
50	Photon Upconverted Circularly Polarized Luminescence via Triplet–Triplet Annihilation. Advanced Materials, 2019, 31, e1805683.	21.0	50
51	Circularly polarized luminescence of nanoassemblies <i>via</i> multi-dimensional chiral architecture control. Nanoscale, 2020, 12, 19497-19515.	5.6	49
52	Light-triggered self-assembly of a cyanostilbene-conjugated glutamide from nanobelts to nanotoroids and inversion of circularly polarized luminescence. Chemical Communications, 2018, 54, 4513-4516.	4.1	48
53	Improving the Overall Properties of Circularly Polarized Luminescent Materials Through Arene–Perfluoroarene Interactions. Angewandte Chemie - International Edition, 2021, 60, 4575-4580.	13.8	48
54	Circularly polarized luminescence of achiral open-shell π-radicals. Chemical Communications, 2019, 55, 6583-6586.	4.1	45

#	Article	IF	Citations
55	Steering Nanohelix and Upconverted Circularly Polarized Luminescence by Using Completely Achiral Components. ACS Nano, 2021, 15, 2753-2761.	14.6	44
56	Hierarchical co-assembly of chiral lipid nanotubes with an azobenzene derivative: optical and chiroptical switching. Soft Matter, 2011, 7, 4654.	2.7	43
57	Chirality Amplification of Porphyrin Assemblies Exclusively Constructed from Achiral Porphyrin Derivatives. ChemPhysChem, 2006, 7, 2419-2423.	2.1	40
58	Endowing inorganic nanomaterials with circularly polarized luminescence. Aggregate, 2022, 3, .	9.9	40
59	Organogelationâ€Controlled Topochemical [2+2] Cycloaddition and Morphological Changes: From Nanofiber to Peculiar Coaxial Hollow Toruloidâ€Like Nanostructures. Chemistry - A European Journal, 2013, 19, 16072-16079.	3.3	39
60	Enhanced Circularly Polarized Luminescence in Emissive Chargeâ€Transfer Complexes. Angewandte Chemie, 2019, 131, 7087-7093.	2.0	38
61	Dual-Mode Induction of Tunable Circularly Polarized Luminescence from Chiral Metal-Organic Frameworks. Research, 2020, 2020, 6452123.	5.7	38
62	A Peptide Dendronâ€Based Shrinkable Metalloâ€Hydrogel for Charged Species Separation and Stepwise Release of Drugs. Chemistry - A European Journal, 2014, 20, 15419-15425.	3.3	37
63	Hierarchical Self-Assembly and Chiroptical Studies of Luminescent 4d–4f Cages. Inorganic Chemistry, 2018, 57, 7982-7992.	4.0	37
64	Halogen Bonded Chiral Emitters: Generation of Chiral Fractal Architecture with Amplified Circularly Polarized Luminescence. Angewandte Chemie - International Edition, 2021, 60, 22711-22716.	13.8	37
65	Enhanced Circularly Polarized Luminescence from Reorganized Chiral Emitters on the Skeleton of a Zeolitic Imidazolate Framework. Angewandte Chemie, 2019, 131, 5032-5036.	2.0	36
66	Fabrication of organogels composed from carbon nanotubes through a supramolecular approach. New Journal of Chemistry, 2010, 34, 2847.	2.8	35
67	Nanotrumpets and circularly polarized luminescent nanotwists hierarchically self-assembled from an achiral <i>C</i> ₃ -symmetric ester. Chemical Communications, 2018, 54, 4025-4028.	4.1	34
68	Selfâ€Assembling Nanotubes Consisting of Rigid Cyclic γâ€Peptides. Advanced Functional Materials, 2012, 22, 3051-3056.	14.9	33
69	Langmuirâ´'Blodgett Films and Chiroptical Switch of an Azobenzene-Containing Dendron Regulated by the in Situ Hostâ´'Guest Reaction at the Air/Water Interface. Langmuir, 2011, 27, 1326-1331.	3.5	32
70	Solventâ€Regulated Selfâ€Assembly of an Achiral Donor–Acceptor Complex in Confined Chiral Nanotubes: Chirality Transfer, Inversion and Amplification. Chemistry - A European Journal, 2017, 23, 8225-8231.	3.3	32
71	Cooperative Chirality and Sequential Energy Transfer in a Supramolecular Lightâ€Harvesting Nanotube. Angewandte Chemie, 2019, 131, 854-858.	2.0	32
72	A new strategy to achieve enhanced upconverted circularly polarized luminescence in chiral perovskite nanocrystals. Nano Research, 2022, 15, 1047-1053.	10.4	31

#	Article	IF	CITATIONS
73	Doublet–Triplet Energy Transfer-Dominated Photon Upconversion. Journal of Physical Chemistry Letters, 2017, 8, 5865-5870.	4.6	30
74	All-or-none switching of photon upconversion in self-assembled organogel systems. Faraday Discussions, 2017, 196, 305-316.	3.2	29
75	Amplifying Dissymmetry Factor of Upconverted Circularly Polarized Luminescence through Chirality-Induced Spin Polarization in the Photon Upconversion Process. Journal of Physical Chemistry Letters, 2020, 11, 311-317.	4.6	28
76	Steering Triplet–Triplet Annihilation Upconversion through Enantioselective Self-Assembly in a Supramolecular Gel. Journal of the American Chemical Society, 2021, 143, 13259-13265.	13.7	27
77	Towards a universal organogelator: A general mixing approach to fabricate various organic compounds into organogels. Science China Chemistry, 2011, 54, 1051-1063.	8.2	26
78	Highly efficient photon upconversion based on triplet–triplet annihilation from bichromophoric annihilators. Journal of Materials Chemistry C, 2021, 9, 14201-14208.	5.5	26
79	Modulating the Excited State Chirality of Dynamic Chemical Reactions in Chiral Micelles. Angewandte Chemie - International Edition, 2022, 61, .	13.8	26
80	Mechanically Controlled and Consecutively Boosted Circularly Polarized Luminescence of Nanoassemblies from Achiral Molecules. Journal of Physical Chemistry C, 2020, 124, 17274-17281.	3.1	25
81	Photopolymerization and Formation of a Stable Purple Langmuirâ Blodgett Film Based on the Gemini-Type Amphiphilic Diacetylene Derivatives. Journal of Physical Chemistry B, 2010, 114, 8871-8878.	2.6	24
82	Optically active quantum dots with induced circularly polarized luminescence in amphiphilic peptide dendron hydrogel. Nanoscale Advances, 2019, 1, 508-512.	4.6	21
83	Self-assembly of l-glutamate based aromatic dendrons through the air/water interface: morphology, photodimerization and supramolecular chirality. Physical Chemistry Chemical Physics, 2010, 12, 4383.	2.8	19
84	Structural Insights Into 9â€Styrylanthraceneâ€Based Luminophores: Geometry Control Versus Mechanofluorochromism and Sensing Properties. Chemistry - an Asian Journal, 2017, 12, 830-834.	3.3	18
85	Signal transmission encryption based on dye-doped chiral liquid crystals <i>via</i> tunable and efficient circularly polarized luminescence. Materials Advances, 2021, 2, 3851-3855.	5.4	18
86	Dynamic Evolution of Coaxial Nanotoruloid in the Self-Assembled Naphthyl-Containing l-Glutamide. Langmuir, 2016, 32, 12534-12541.	3.5	16
87	Photoswitchable Photon Upconversion from Turn-on Mode Fluorescent Diarylethenes. CCS Chemistry, 2021, 3, 665-674.	7.8	16
88	Recent Advances of Circularly Polarized Luminescence in Photon Upconversion Systems. Chemistry Letters, 2021, 50, 546-552.	1.3	15
89	The chiral amine triggered self-assembly of achiral emissive molecules into circularly polarized luminescent supramolecular assemblies. Chemical Communications, 2019, 55, 11135-11138.	4.1	14
90	Preparation of optical active polydiacetylene through gelating and the control of supramolecular chirality. Science China Chemistry, 2010, 53, 432-437.	8.2	13

#	Article	IF	Citations
91	Photon upconversion in organic nanoparticles and subsequent amplification by plasmonic silver nanowires. Nanoscale, 2018, 10, 985-991.	5.6	13
92	Toward Large Dissymmetry Factor of Circularly Polarized Luminescence in Donor–Acceptor Hybrid Systems. Journal of Physical Chemistry Letters, 2021, 12, 8566-8574.	4.6	13
93	Circularly polarized luminescent porous crystalline nanomaterials. Nanoscale, 2022, 14, 1123-1135.	5.6	13
94	Interfacial assembly and host–guest interaction of anthracene-conjugated l-glutamate dendron with cyclodextrin at the air/water interface. Chinese Chemical Letters, 2014, 25, 487-490.	9.0	12
95	Amplifying the excited state chirality through self-assembly and subsequent enhancement <i>via</i> plasmonic silver nanowires. Nanoscale, 2020, 12, 19760-19767.	5.6	12
96	Improving the Overall Properties of Circularly Polarized Luminescent Materials Through Arene–Perfluoroarene Interactions. Angewandte Chemie, 2021, 133, 4625-4630.	2.0	12
97	Chiral self-assembly regulated photon upconversion based on triplet-triplet annihilation. Chinese Chemical Letters, 2019, 30, 1923-1926.	9.0	11
98	Switching Photon Upconversion by Using Photofluorochromic Annihilator with Low-Lying Triplet. Journal of Physical Chemistry Letters, 2021, 12, 3135-3141.	4.6	11
99	Halogen Bonded Chiral Emitters: Generation of Chiral Fractal Architecture with Amplified Circularly Polarized Luminescence. Angewandte Chemie, 2021, 133, 22893.	2.0	11
100	Interfacial assembly of a series of trigonal Schiff base amphiphiles in organized molecular films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 407, 108-115.	4.7	10
101	Regulating the excited state chirality to fabricate high-performance-solid-state circularly polarized luminescence materials. Chemical Science, 2022, 13, 6074-6080.	7.4	9
102	Chiral Perovskite Nanocrystals: Endowing Perovskite Nanocrystals with Circularly Polarized Luminescence (Adv. Mater. 12/2018). Advanced Materials, 2018, 30, 1870081.	21.0	8
103	Tunable Antiâ€Stokesâ€Shift Behaviors Based on Intramolecular Charge Transfer Characteristics of Diarylethene Derivatives. Advanced Optical Materials, 2022, 10, 2102180.	7.3	5
104	Regulating Circularly Polarized Luminescence of Axially Chiral Anthracene Derivatives through Solvatochromism and Supramolecular Selfâ€assembly. ChemNanoMat, 2021, 7, 429-433.	2.8	4
105	Photofluorochromic water-dispersible nanoparticles for single-photon-absorption upconversion cell imaging. Nanotechnology, 2021, 32, 475606.	2.6	4
106	Modulating the Excited State Chirality of Dynamic Chemical Reactions in Chiral Micelles. Angewandte Chemie, 2022, 134, .	2.0	4
107	Aqueous Photon Upconversion by Anionic Acceptors Self-Assembled on Cationic Bilayer Membranes with a Long Triplet Lifetime. Organic Materials, 2019, 01, 043-049.	2.0	3
108	Cooperative user association and resource allocation for task offloading in hybrid GEO‣EO satellite networks. International Journal of Satellite Communications and Networking, 2022, 40, 230-243.	1.8	3

#	Article	IF	CITATIONS
109	Numerical Study on the Influence of Distributing Chamber Volume on Metallurgical Effects in Two-Strand Induction Heating Tundish. Metals, 2022, 12, 509.	2.3	3
110	Tunable Circularly Polarized Luminescence of Excitedâ€Stateâ€Protonâ€Transferâ€Based Chiral Guanidine. Advanced Photonics Research, 2022, 3, .	3.6	3
111	Dependence of the photo-response behavior of self-assembled 2D Azo-derivatives on the functional groups on a solid surface. New Journal of Chemistry, 2019, 43, 6262-6266.	2.8	2
112	Circularly Polarized Luminescence from Gelator Molecules: From Isolated Molecules to Assemblies. , 2020, , 249-272.		1
113	Advanced functional luminogens in the solid-state: general discussion. Faraday Discussions, 2017, 196, 317-334.	3.2	O
114	Interfacial assembled Langmuir films of isomeric lipid derivative: Effect of hydrogen bond and chirality transfer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124280.	4.7	0