Qi Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5253913/publications.pdf

Version: 2024-02-01

759233 752698 22 410 12 20 citations h-index g-index papers 22 22 22 463 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Hâ€Shaped Oligofluorenes for Highly Airâ€Stable and Lowâ€Threshold Nonâ€Doped Deep Blue Lasing. Advanced Materials, 2014, 26, 2937-2942.	21.0	57
2	Pyreneâ€Capped Conjugated Amorphous Starbursts: Synthesis, Characterization, and Stable Lasing Properties in Ambient Atmosphere. Advanced Functional Materials, 2015, 25, 4617-4625.	14.9	51
3	Toward Electrically Pumped Organic Lasers: A Review and Outlook on Material Developments and Resonator Architectures. Advanced Photonics Research, 2021, 2, 2000155.	3.6	42
4	Host Exciton Confinement for Enhanced Försterâ€Transferâ€Blend Gain Media Yielding Highly Efficient Yellowâ€Green Lasers. Advanced Functional Materials, 2018, 28, 1705824.	14.9	39
5	An Easy Approach to Control \hat{I}^2 -Phase Formation in PFO Films for Optimized Emission Properties. Molecules, 2017, 22, 315.	3.8	35
6	Solution-processed anthracene-based molecular glasses as stable blue-light-emission laser gain media. Organic Electronics, 2015, 18, 95-100.	2.6	26
7	Flexible all-polymer waveguide for low threshold amplified spontaneous emission. Scientific Reports, 2016, 6, 34565.	3.3	26
8	Novel Fluorene-Based Copolymers Containing Branched 2-Methyl-butyl-Substituted Fluorene- <i>co</i> -benzothiadiazole Units for Remarkable Optical Gain Enhancement in Green-Yellow Emission Range. Journal of Physical Chemistry C, 2016, 120, 11350-11358.	3.1	26
9	Flexible distributed feedback lasers based on nanoimprinted cellulose diacetate with efficient multiple wavelength lasing. Npj Flexible Electronics, 2019, 3, .	10.7	22
10	Efficient Optical Gain from Nearâ€Infrared Polymer Lasers Based on Poly[<i>N</i> â€9′â€heptadecanylâ€2,7â€carbazoleâ€ <i>alt</i> â€5,5â€(4′,7′â€diâ€2â€thienylâ€2′,1 Optical Materials, 2018, 6, 1800263.	.â € ?₃3′	â €b ænzothiad
11	Efficient amplified spontaneous emission from oligofluorene-pyrene starbursts with improved electron affinity property. Optics Express, 2015, 23, A465.	3.4	14
12	Concurrent Optical Gain Optimization and Electrical Tuning in Novel Oligomer:Polymer Blends with Yellowâ€Green Laser Emission. Advanced Science, 2019, 6, 1801455.	11.2	12
13	Quantifying the efficiency of förster-assisted optical gain in semiconducting polymer blends by excitation wavelength selective amplified spontaneous emission. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2311-2317.	2.1	8
14	Gain Properties and Distributed Feedback Laser Performance of 7F6/Poly(Styrene) Blend Films: Potential Core Material for Plastic Optical Fiber Expanding the Bandwidth to Visible Region. Macromolecular Chemistry and Physics, 2018, 219, 1700527.	2.2	6
15	Origin of Intramolecular Lowâ€Threshold Amplified Spontaneous Emission. Advanced Optical Materials, 2021, 9, 2001956.	7.3	5
16	Polarized red, green, and blue light emitting diodes fabricated with identical device configuration using rubbed PEDOT:PSS as alignment layer*. Chinese Physics B, 2019, 28, 078108.	1.4	4
17	Simultaneously Enhancing Photoluminescence Quantum Efficiency and Optical Gain of Polyfluorene via Backbone Intercalation of 2,5â€Dimethylâ€1,4â€Phenylene. Advanced Optical Materials, 2020, 8, 2000187.	7.3	4
18	Current reflearch and future development of organic laser materials and devices. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 094202.	0.5	4

#	Article	IF	CITATIONS
19	Deep Blue Laser Gain Medium Based on Triphenylamine Substituted Arylfluorene With Improved Photo-Stability. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 15-20.	2.9	3
20	Highly pH-responsive sensor based on amplified spontaneous emission coupled to colorimetry. Scientific Reports, 2017, 7, 46265.	3.3	3
21	Facile and Controllable Fabrication of Highâ€Performance Methylammonium Lead Triiodide Films Using Lead Acetate Precursor for Lowâ€Threshold Amplified Spontaneous Emission and Distributedâ€Feedback Lasers. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900176.	2.4	3
22	Low–threshold sky-blue gain medium from a Triazine-capped ladder-type oligomer neat film. Organic Electronics, 2020, 76, 105452.	2.6	2